BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 8634245)

  • 1. Trypanosomal nucleoside hydrolase. Resonance Raman spectroscopy of a transition-state inhibitor complex.
    Deng H; Chan AW; Bagdassarian CK; Estupiñán B; Ganem B; Callender RH; Schramm VL
    Biochemistry; 1996 May; 35(19):6037-47. PubMed ID: 8634245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional structure of the inosine-uridine nucleoside N-ribohydrolase from Crithidia fasciculata.
    Degano M; Gopaul DN; Scapin G; Schramm VL; Sacchettini JC
    Biochemistry; 1996 May; 35(19):5971-81. PubMed ID: 8634238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amidrazone analogues of D-ribofuranose as transition-state inhibitors of nucleoside hydrolase.
    Boutellier M; Horenstein BA; Semenyaka A; Schramm VL; Ganem B
    Biochemistry; 1994 Apr; 33(13):3994-4000. PubMed ID: 8142404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of the molecular electrostatic potential surface of an enzymatic transition state with novel transition-state inhibitors.
    Horenstein BA; Schramm VL
    Biochemistry; 1993 Sep; 32(38):9917-25. PubMed ID: 8399161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isozyme-specific transition state inhibitors for the trypanosomal nucleoside hydrolases.
    Parkin DW; Limberg G; Tyler PC; Furneaux RH; Chen XY; Schramm VL
    Biochemistry; 1997 Mar; 36(12):3528-34. PubMed ID: 9132003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic nature of the transition state for nucleoside hydrolase. A blueprint for inhibitor design.
    Horenstein BA; Schramm VL
    Biochemistry; 1993 Jul; 32(28):7089-97. PubMed ID: 8343502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding modes for substrate and a proposed transition-state analogue of protozoan nucleoside hydrolase.
    Parkin DW; Schramm VL
    Biochemistry; 1995 Oct; 34(42):13961-6. PubMed ID: 7577992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypanosomal nucleoside hydrolase. A novel mechanism from the structure with a transition-state inhibitor.
    Degano M; Almo SC; Sacchettini JC; Schramm VL
    Biochemistry; 1998 May; 37(18):6277-85. PubMed ID: 9572842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition-state complex of the purine-specific nucleoside hydrolase of T. vivax: enzyme conformational changes and implications for catalysis.
    Versées W; Barlow J; Steyaert J
    J Mol Biol; 2006 Jun; 359(2):331-46. PubMed ID: 16630632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic potential surface analysis of the transition state for AMP nucleosidase and for formycin 5'-phosphate, a transition-state inhibitor.
    Ehrlich JI; Schramm VL
    Biochemistry; 1994 Aug; 33(30):8890-6. PubMed ID: 8043576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guanosine-inosine-preferring nucleoside N-glycohydrolase from Crithidia fasciculata.
    Estupiñán B; Schramm VL
    J Biol Chem; 1994 Sep; 269(37):23068-73. PubMed ID: 8083208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition-state analysis of nucleoside hydrolase from Crithidia fasciculata.
    Horenstein BA; Parkin DW; Estupiñán B; Schramm VL
    Biochemistry; 1991 Nov; 30(44):10788-95. PubMed ID: 1931998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase.
    Miles RW; Tyler PC; Furneaux RH; Bagdassarian CK; Schramm VL
    Biochemistry; 1998 Jun; 37(24):8615-21. PubMed ID: 9628722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 2.0 A structure of malarial purine phosphoribosyltransferase in complex with a transition-state analogue inhibitor.
    Shi W; Li CM; Tyler PC; Furneaux RH; Cahill SM; Girvin ME; Grubmeyer C; Schramm VL; Almo SC
    Biochemistry; 1999 Aug; 38(31):9872-80. PubMed ID: 10433693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Picomolar transition state analogue inhibitors of human 5'-methylthioadenosine phosphorylase and X-ray structure with MT-immucillin-A.
    Singh V; Shi W; Evans GB; Tyler PC; Furneaux RH; Almo SC; Schramm VL
    Biochemistry; 2004 Jan; 43(1):9-18. PubMed ID: 14705926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Apr; 36(15):4526-34. PubMed ID: 9109661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues.
    Singh V; Lee JE; Núñez S; Howell PL; Schramm VL
    Biochemistry; 2005 Sep; 44(35):11647-59. PubMed ID: 16128565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulations of trypanosomal nucleoside hydrolase: determination of the protonation state of the bound transition-state analogue.
    Mazumder D; Kahn K; Bruice TC
    J Am Chem Soc; 2002 Jul; 124(30):8825-33. PubMed ID: 12137535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition state analysis of adenosine nucleosidase from yellow lupin (Lupinus luteus).
    Bates C; Kendrick Z; McDonald N; Kline PC
    Phytochemistry; 2006 Jan; 67(1):5-12. PubMed ID: 16300810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic states of substrates and transition state analogues at the catalytic sites of N-ribosyltransferases.
    Sauve AA; Cahill SM; Zech SG; Basso LA; Lewandowicz A; Santos DS; Grubmeyer C; Evans GB; Furneaux RH; Tyler PC; McDermott A; Girvin ME; Schramm VL
    Biochemistry; 2003 May; 42(19):5694-705. PubMed ID: 12741826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.