BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8634261)

  • 1. Cytidine deaminase complexed to 3-deazacytidine: a "valence buffer" in zinc enzyme catalysis.
    Xiang S; Short SA; Wolfenden R; Carter CW
    Biochemistry; 1996 Feb; 35(5):1335-41. PubMed ID: 8634261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of the cytidine deaminase-product complex provides evidence for efficient proton transfer and ground-state destabilization.
    Xiang S; Short SA; Wolfenden R; Carter CW
    Biochemistry; 1997 Apr; 36(16):4768-74. PubMed ID: 9125497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytidine deaminase. The 2.3 A crystal structure of an enzyme: transition-state analog complex.
    Betts L; Xiang S; Short SA; Wolfenden R; Carter CW
    J Mol Biol; 1994 Jan; 235(2):635-56. PubMed ID: 8289286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementary truncations of a hydrogen bond to ribose involved in transition-state stabilization by cytidine deaminase.
    Carlow DC; Short SA; Wolfenden R
    Biochemistry; 1998 Feb; 37(5):1199-203. PubMed ID: 9477944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 1.48 A resolution crystal structure of the homotetrameric cytidine deaminase from mouse.
    Teh AH; Kimura M; Yamamoto M; Tanaka N; Yamaguchi I; Kumasaka T
    Biochemistry; 2006 Jun; 45(25):7825-33. PubMed ID: 16784234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantum chemical study of the catalysis for cytidine deaminase: contribution of the extra water molecule.
    Matsubara T; Ishikura M; Aida M
    J Chem Inf Model; 2006; 46(3):1276-85. PubMed ID: 16711747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of tight binding of a near-perfect transition-state analogue by cytidine deaminase: implications for enzyme catalysis.
    Guo H; Rao N; Xu Q; Guo H
    J Am Chem Soc; 2005 Mar; 127(9):3191-7. PubMed ID: 15740159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of aldehyde oxidation catalyzed by horse liver alcohol dehydrogenase.
    Olson LP; Luo J; Almarsson O; Bruice TC
    Biochemistry; 1996 Jul; 35(30):9782-91. PubMed ID: 8703951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flight of a cytidine deaminase complex with an imperfect transition state analogue inhibitor: mass spectrometric evidence for the presence of a trapped water molecule.
    Schroeder GK; Zhou L; Snider MJ; Chen X; Wolfenden R
    Biochemistry; 2012 Aug; 51(32):6476-86. PubMed ID: 22775299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural, kinetic, and mutational studies of the zinc ion environment in tetrameric cytidine deaminase.
    Johansson E; Neuhard J; Willemoës M; Larsen S
    Biochemistry; 2004 May; 43(20):6020-9. PubMed ID: 15147186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-state selectivity for a single hydroxyl group during catalysis by cytidine deaminase.
    Xiang S; Short SA; Wolfenden R; Carter CW
    Biochemistry; 1995 Apr; 34(14):4516-23. PubMed ID: 7718553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site.
    Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W
    J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II.
    Huang CC; Lesburg CA; Kiefer LL; Fierke CA; Christianson DW
    Biochemistry; 1996 Mar; 35(11):3439-46. PubMed ID: 8639494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of glutamate-104 in generating a transition state analogue inhibitor at the active site of cytidine deaminase.
    Carlow DC; Short SA; Wolfenden R
    Biochemistry; 1996 Jan; 35(3):948-54. PubMed ID: 8547277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio ONIOM-molecular dynamics (MD) study on the deamination reaction by cytidine deaminase.
    Matsubara T; Dupuis M; Aida M
    J Phys Chem B; 2007 Aug; 111(33):9965-74. PubMed ID: 17661509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of active site glutamate-217 in mouse adenosine deaminase.
    Mohamedali KA; Kurz LC; Rudolph FB
    Biochemistry; 1996 Feb; 35(5):1672-80. PubMed ID: 8634299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis.
    Park H; Brothers EN; Merz KM
    J Am Chem Soc; 2005 Mar; 127(12):4232-41. PubMed ID: 15783205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural diversity within the mononuclear and binuclear active sites of N-acetyl-D-glucosamine-6-phosphate deacetylase.
    Hall RS; Brown S; Fedorov AA; Fedorov EV; Xu C; Babbitt PC; Almo SC; Raushel FM
    Biochemistry; 2007 Jul; 46(27):7953-62. PubMed ID: 17567048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate connectivity effects in the transition state for cytidine deaminase.
    Carlow D; Wolfenden R
    Biochemistry; 1998 Aug; 37(34):11873-8. PubMed ID: 9718310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
    Dal Peraro M; Vila AJ; Carloni P
    Proteins; 2004 Feb; 54(3):412-23. PubMed ID: 14747990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.