BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 8634285)

  • 1. Binding of nitric oxide and carbon monoxide to soluble guanylate cyclase as observed with Resonance raman spectroscopy.
    Deinum G; Stone JR; Babcock GT; Marletta MA
    Biochemistry; 1996 Feb; 35(5):1540-7. PubMed ID: 8634285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance raman characterization of the heme domain of soluble guanylate cyclase.
    Schelvis JP; Zhao Y; Marletta MA; Babcock GT
    Biochemistry; 1998 Nov; 37(46):16289-97. PubMed ID: 9819221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman characterization of soluble guanylate cyclase expressed from baculovirus.
    Fan B; Gupta G; Danziger RS; Friedman JM; Rousseau DL
    Biochemistry; 1998 Feb; 37(5):1178-84. PubMed ID: 9477941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of ferrous FixL-nitric oxide adducts by resonance Raman spectroscopy.
    Lukat-Rodgers GS; Rodgers KR
    Biochemistry; 1997 Apr; 36(14):4178-87. PubMed ID: 9100012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman evidence for the presence of two heme pocket conformations with varied activities in CO-bound bovine soluble guanylate cyclase and their conversion.
    Li Z; Pal B; Takenaka S; Tsuyama S; Kitagawa T
    Biochemistry; 2005 Jan; 44(3):939-46. PubMed ID: 15654750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman study on synergistic activation of soluble guanylate cyclase by imidazole, YC-1 and GTP.
    Pal B; Li Z; Ohta T; Takenaka S; Tsuyama S; Kitagawa T
    J Inorg Biochem; 2004 May; 98(5):824-32. PubMed ID: 15134928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for ligand discrimination and response initiation in the heme-based oxygen sensor FixL.
    Rodgers KR; Lukat-Rodgers GS; Barron JA
    Biochemistry; 1996 Jul; 35(29):9539-48. PubMed ID: 8755735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of nitrosoalkane binding and activation of soluble guanylate cyclase.
    Derbyshire ER; Tran R; Mathies RA; Marletta MA
    Biochemistry; 2005 Dec; 44(49):16257-65. PubMed ID: 16331986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of soluble guanylate cyclase with diatomics as probed by resonance Raman spectroscopy.
    Pal B; Kitagawa T
    J Inorg Biochem; 2005 Jan; 99(1):267-79. PubMed ID: 15598506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of GTP on bound nitric oxide of soluble guanylate cyclase probed by resonance Raman spectroscopy.
    Tomita T; Ogura T; Tsuyama S; Imai Y; Kitagawa T
    Biochemistry; 1997 Aug; 36(33):10155-60. PubMed ID: 9254612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural changes in the heme proximal pocket induced by nitric oxide binding to soluble guanylate cyclase.
    Zhao Y; Hoganson C; Babcock GT; Marletta MA
    Biochemistry; 1998 Sep; 37(36):12458-64. PubMed ID: 9730818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heme environment in aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis.
    Oinuma K; Ohta T; Konishi K; Hashimoto Y; Higashibata H; Kitagawa T; Kobayashi M
    FEBS Lett; 2004 Jun; 568(1-3):44-8. PubMed ID: 15196918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral and ligand-binding properties of an unusual hemoprotein, the ferric form of soluble guanylate cyclase.
    Stone JR; Sands RH; Dunham WR; Marletta MA
    Biochemistry; 1996 Mar; 35(10):3258-62. PubMed ID: 8605161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman evidence for a novel charge relay activation mechanism of the CO-dependent heme protein transcription factor CooA.
    Vogel KM; Spiro TG; Shelver D; Thorsteinsson MV; Roberts GP
    Biochemistry; 1999 Mar; 38(9):2679-87. PubMed ID: 10052938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of the proximal and distal histidine environment of cytoglobin and neuroglobin.
    Sawai H; Makino M; Mizutani Y; Ohta T; Sugimoto H; Uno T; Kawada N; Yoshizato K; Kitagawa T; Shiro Y
    Biochemistry; 2005 Oct; 44(40):13257-65. PubMed ID: 16201751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of histidine 105 in the beta1 subunit of soluble guanylate cyclase as the heme proximal ligand.
    Zhao Y; Schelvis JP; Babcock GT; Marletta MA
    Biochemistry; 1998 Mar; 37(13):4502-9. PubMed ID: 9521770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman studies of cytochrome c' support the binding of NO and CO to opposite sides of the heme: implications for ligand discrimination in heme-based sensors.
    Andrew CR; Green EL; Lawson DM; Eady RR
    Biochemistry; 2001 Apr; 40(13):4115-22. PubMed ID: 11300792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman study of Bacillus subtilis NO synthase-like protein: similarities and differences with mammalian NO synthases.
    Santolini J; Roman M; Stuehr DJ; Mattioli TA
    Biochemistry; 2006 Feb; 45(5):1480-9. PubMed ID: 16445290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of soluble guanylate cyclase by carbon monoxide and nitric oxide: a mechanistic model.
    Sharma VS; Magde D
    Methods; 1999 Dec; 19(4):494-505. PubMed ID: 10581149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.