BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 8634296)

  • 1. Binding of the oxidized, reduced, and radical flavin species to chorismate synthase. An investigation by spectrophotometry, fluorimetry, and electron paramagnetic resonance and electron nuclear double resonance spectroscopy.
    Macheroux P; Petersen J; Bornemann S; Lowe DJ; Thorneley RN
    Biochemistry; 1996 Feb; 35(5):1643-52. PubMed ID: 8634296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies with flavin analogs provide evidence that a protonated reduced FMN is the substrate-induced transient intermediate in the reaction of Escherichia coli chorismate synthase.
    Macheroux P; Bornemann S; Ghisla S; Thorneley RN
    J Biol Chem; 1996 Oct; 271(42):25850-8. PubMed ID: 8824216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transient kinetics of Escherichia coli chorismate synthase: substrate consumption, product formation, phosphate dissociation, and characterization of a flavin intermediate.
    Bornemann S; Lowe DJ; Thorneley RN
    Biochemistry; 1996 Jul; 35(30):9907-16. PubMed ID: 8703965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies with substrate and cofactor analogues provide evidence for a radical mechanism in the chorismate synthase reaction.
    Osborne A; Thorneley RN; Abell C; Bornemann S
    J Biol Chem; 2000 Nov; 275(46):35825-30. PubMed ID: 10956653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic basis of electron transfer in dihydroorotate dehydrogenase B from Lactococcus lactis: analysis by potentiometry, EPR spectroscopy, and ENDOR spectroscopy.
    Mohsen AW; Rigby SE; Jensen KF; Munro AW; Scrutton NS
    Biochemistry; 2004 Jun; 43(21):6498-510. PubMed ID: 15157083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenic analysis of an invariant aspartate residue in chorismate synthase supports its role as an active site base.
    Rauch G; Ehammer H; Bornemann S; Macheroux P
    Biochemistry; 2007 Mar; 46(12):3768-74. PubMed ID: 17326665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a major structural change in Escherichia coli chorismate synthase induced by flavin and substrate binding.
    Macheroux P; Schönbrunn E; Svergun DI; Volkov VV; Koch MH; Bornemann S; Thorneley RN
    Biochem J; 1998 Oct; 335 ( Pt 2)(Pt 2):319-27. PubMed ID: 9761730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies.
    Chang FC; Swenson RP
    Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuous, anaerobic spectrophotometric assay for chorismate synthase activity that utilizes photoreduced flavin mononucleotide.
    Ramjee MK; Coggins JR; Thorneley RN
    Anal Biochem; 1994 Jul; 220(1):137-41. PubMed ID: 7978236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPR spectroscopic characterization of neuronal NO synthase.
    Galli C; MacArthur R; Abu-Soud HM; Clark P; Steuhr DJ; Brudvig GW
    Biochemistry; 1996 Feb; 35(8):2804-10. PubMed ID: 8611587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacement of two invariant serine residues in chorismate synthase provides evidence that a proton relay system is essential for intermediate formation and catalytic activity.
    Rauch G; Ehammer H; Bornemann S; Macheroux P
    FEBS J; 2008 Apr; 275(7):1464-1473. PubMed ID: 18279385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium.
    Chen HC; Swenson RP
    Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the electrostatic effect of the 5'-phosphate of the flavin mononucleotide cofactor on the oxidation--reduction potentials of the flavodoxin from desulfovibrio vulgaris (Hildenborough).
    Zhou Z; Swenson RP
    Biochemistry; 1996 Sep; 35(38):12443-54. PubMed ID: 8823179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of NADPH utilization by chorismate synthase and its implications for the evolution of the shikimate pathway.
    Ehammer H; Rauch G; Prem A; Kappes B; Macheroux P
    Mol Microbiol; 2007 Sep; 65(5):1249-57. PubMed ID: 17662045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli chorismate synthase catalyzes the conversion of (6S)-6-fluoro-5-enolpyruvylshikimate-3-phosphate to 6-fluorochorismate. Implications for the enzyme mechanism and the antimicrobial action of (6S)-6-fluoroshikimate.
    Bornemann S; Ramjee MK; Balasubramanian S; Abell C; Coggins JR; Lowe DJ; Thorneley RN
    J Biol Chem; 1995 Sep; 270(39):22811-5. PubMed ID: 7559411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the N(5)-H bond of the isoalloxazine moiety of flavin radicals by X- and W-band pulsed electron-nuclear double resonance.
    Weber S; Kay CW; Bacher A; Richter G; Bittl R
    Chemphyschem; 2005 Feb; 6(2):292-9. PubMed ID: 15751352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic and kinetic characterization of the bifunctional chorismate synthase from Neurospora crassa: evidence for a common binding site for 5-enolpyruvylshikimate 3-phosphate and NADPH.
    Kitzing K; Macheroux P; Amrhein N
    J Biol Chem; 2001 Nov; 276(46):42658-66. PubMed ID: 11526120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unambiguous determination of the g-matrix orientation in a neutral flavin radical by pulsed electron-nuclear double resonance at 94 GHz.
    Kay CW; Bittl R; Bacher A; Richter G; Weber S
    J Am Chem Soc; 2005 Aug; 127(31):10780-1. PubMed ID: 16076154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G-tensors of the flavin adenine dinucleotide radicals in glucose oxidase: a comparative multifrequency electron paramagnetic resonance and electron-nuclear double resonance study.
    Okafuji A; Schnegg A; Schleicher E; Möbius K; Weber S
    J Phys Chem B; 2008 Mar; 112(11):3568-74. PubMed ID: 18302360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.