These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8634540)

  • 41. Seasonal variation in the Dutch bovine raw milk composition.
    Heck JM; van Valenberg HJ; Dijkstra J; van Hooijdonk AC
    J Dairy Sci; 2009 Oct; 92(10):4745-55. PubMed ID: 19762790
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inverse relationship between the electrolyte concentration and the content of fat, protein, and lactose in the normal milks of individual cows from the same herd.
    Oshima M; Fuse H
    J Dairy Res; 1977 Jun; 44(2):347-50. PubMed ID: 908778
    [No Abstract]   [Full Text] [Related]  

  • 43. Technical note: Milk composition in mice--methodological aspects and effects of mouse strain and lactation day.
    Görs S; Kucia M; Langhammer M; Junghans P; Metges CC
    J Dairy Sci; 2009 Feb; 92(2):632-7. PubMed ID: 19164675
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid detection of adulteration of milks from different species using Fourier Transform Infrared Spectroscopy (FTIR).
    Cirak O; Icyer NC; Durak MZ
    J Dairy Res; 2018 May; 85(2):222-225. PubMed ID: 29785908
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accuracy of in-line milk composition analysis with diffuse reflectance near-infrared spectroscopy.
    Melfsen A; Hartung E; Haeussermann A
    J Dairy Sci; 2012 Nov; 95(11):6465-76. PubMed ID: 22959947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Changes in Llama (Lama glama) milk composition during lactation.
    Riek A; Gerken M
    J Dairy Sci; 2006 Sep; 89(9):3484-93. PubMed ID: 16899683
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simplified and rapid methods for the determination of protein, fat and lactose in human milk and the energy intake by the breast-fed infant.
    Verheul FE; vd Bosch MJ; Cornelissen PJ; Waelkens JJ
    J Clin Chem Clin Biochem; 1986 May; 24(5):341-6. PubMed ID: 3734703
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of the influence of pasteurization, freezing/thawing, and offer processes on human milk's macronutrient concentrations.
    Vieira AA; Soares FV; Pimenta HP; Abranches AD; Moreira ME
    Early Hum Dev; 2011 Aug; 87(8):577-80. PubMed ID: 21592688
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Performance specifications for infrared milk analysis.
    Biggs DA
    J Assoc Off Anal Chem; 1979 Nov; 62(6):1211-4. PubMed ID: 521408
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection of specific sugars in dairy process samples using multivariate curve resolution.
    Hansen PW; Van Brakel AS; Garman J; Nørgaard L
    J Dairy Sci; 1999 Jul; 82(7):1351-60. PubMed ID: 10416156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Short communication: ketone body concentration in milk determined by Fourier transform infrared spectroscopy: value for the detection of hyperketonemia in dairy cows.
    van Knegsel AT; van der Drift SG; Horneman M; de Roos AP; Kemp B; Graat EA
    J Dairy Sci; 2010 Jul; 93(7):3065-9. PubMed ID: 20630223
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data.
    Ferragina A; de los Campos G; Vazquez AI; Cecchinato A; Bittante G
    J Dairy Sci; 2015 Nov; 98(11):8133-51. PubMed ID: 26387015
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of Sample Temperature for Measurement Accuracy with FT-NIR Spectroscopy.
    Dvořák L; Fajman M; Sustova K
    J AOAC Int; 2017 Mar; 100(2):499-502. PubMed ID: 28118136
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Composition of red deer milk. 1. Contents of raw constituents (fat, protein, lactose and ash)].
    Brüggemann J; Drescher-Kadan U; Walser-Kärst K
    Z Tierphysiol Tierernahr Futtermittelkd; 1973 Jul; 31(5):227-38. PubMed ID: 4747492
    [No Abstract]   [Full Text] [Related]  

  • 55. [Determination of fat, protein and DM in raw milk by portable short-wave near infrared spectrometer].
    Li XY; Wang JH; Huang YW; Han DH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):665-8. PubMed ID: 21595214
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The relationship between fatty acid profiles in milk identified by Fourier transform infrared spectroscopy and onset of luteal activity in Norwegian dairy cattle.
    Martin AD; Afseth NK; Kohler A; Randby Å; Eknæs M; Waldmann A; Dørum G; Måge I; Reksen O
    J Dairy Sci; 2015 Aug; 98(8):5374-84. PubMed ID: 26004832
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of fatty acid chain length and unsaturation of milk fat by mid-infrared milk analysis.
    Wojciechowski KL; Barbano DM
    J Dairy Sci; 2016 Nov; 99(11):8561-8570. PubMed ID: 27592430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On-Site Measurement of Fat and Protein Contents in Milk Using Mobile NMR Technology.
    Sørensen MK; Balsgart NM; Beyer M; Jensen ON; Nielsen NC
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of protein, nonprotein-soluble components, and lactose concentrations on the irreversible thermal denaturation of beta-lactoglobulin and alpha-lactalbumin in skim milk.
    Anema SG; Lee SK; Klostermeyer H
    J Agric Food Chem; 2006 Sep; 54(19):7339-48. PubMed ID: 16968103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Infrared analyzers for breast milk analysis: fat levels can influence the accuracy of protein measurements.
    Kwan C; Fusch G; Bahonjic A; Rochow N; Fusch C
    Clin Chem Lab Med; 2017 Oct; 55(12):1931-1935. PubMed ID: 28306522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.