These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8634550)

  • 1. Analysis of fermented milk products by near-infrared reflectance spectroscopy.
    Rodríguez-Otero JL; Hermida M
    J AOAC Int; 1996; 79(3):817-21. PubMed ID: 8634550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of fat, protein, and total solids in cheese by near-infrared reflectance spectroscopy.
    Rodriguez-Otero JL; Hermida M; Cepeda A
    J AOAC Int; 1995; 78(3):802-6. PubMed ID: 7756894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between genetic parameters of cheese yield and nutrient recovery or whey loss traits measured from individual model cheese-making methods or predicted from unprocessed bovine milk samples using Fourier-transform infrared spectroscopy.
    Bittante G; Ferragina A; Cipolat-Gotet C; Cecchinato A
    J Dairy Sci; 2014 Oct; 97(10):6560-72. PubMed ID: 25108864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of fat, protein, and total solids in ovine milk by near-infrared spectroscopy.
    Albanell E; Cáceres P; Caja G; Molina E; Gargouri A
    J AOAC Int; 1999; 82(3):753-8. PubMed ID: 10367392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of fat, protein, casein, total solids, and somatic cell count in goat's milk by near-infrared reflectance spectroscopy.
    Albanell E; Caja G; Such X; Rovai M; Salama AA; Casals R
    J AOAC Int; 2003; 86(4):746-52. PubMed ID: 14509434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared analysis of fat, protein, and casein in cow's milk.
    Laporte MF; Paquin P
    J Agric Food Chem; 1999 Jul; 47(7):2600-5. PubMed ID: 10552532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of moisture, starch, protein, and fat in common beans (Phaseolus vulgaris L.) by near infrared spectroscopy.
    Hermida M; Rodriguez N; Rodriguez-Otero JL
    J AOAC Int; 2006; 89(4):1039-41. PubMed ID: 16915842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified versus producer milk calibration: mid-infrared analyzer performance validation.
    Kaylegian KE; Lynch JM; Houghton GE; Fleming JR; Barbano DM
    J Dairy Sci; 2006 Aug; 89(8):2833-45. PubMed ID: 16840599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of near and mid infra-red spectroscopy for analysis of protein, fat, lactose and total solids in raw cow and camel milk.
    Mohamed H; Nagy P; Agbaba J; Kamal-Eldin A
    Food Chem; 2021 Jan; 334():127436. PubMed ID: 32711262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of infrared milk analyzers: modified milk versus producer milk.
    Kaylegian KE; Houghton GE; Lynch JM; Fleming JR; Barbano DM
    J Dairy Sci; 2006 Aug; 89(8):2817-32. PubMed ID: 16840598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robustness of near-infrared calibration models for the prediction of milk constituents during the milking process.
    Melfsen A; Hartung E; Haeussermann A
    J Dairy Res; 2013 Feb; 80(1):103-12. PubMed ID: 23182024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of fat, protein, and lactose in raw milk by Fourier transform infrared spectroscopy and by analysis with a conventional filter-based milk analyzer.
    Lefier D; Grappin R; Pochet S
    J AOAC Int; 1996; 79(3):711-7. PubMed ID: 8634540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatic cell count determination in cow's milk by near-infrared spectroscopy: a new diagnostic tool.
    Tsenkova R; Atanassova S; Kawano S; Toyoda K
    J Anim Sci; 2001 Oct; 79(10):2550-7. PubMed ID: 11721833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Fourier-transformed mid-infrared spectroscopy prediction models for major constituents of fractions of delactosated, defatted milk obtained through ultra- and nanofiltration.
    Franzoi M; Manuelian CL; Rovigatti L; Donati E; De Marchi M
    J Dairy Sci; 2018 Aug; 101(8):6835-6841. PubMed ID: 29753470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reference-free spectroscopic determination of fat and protein in milk in the visible and near infrared region below 1000nm using spatially resolved diffuse reflectance fiber probe.
    Bogomolov A; Belikova V; Galyanin V; Melenteva A; Meyer H
    Talanta; 2017 May; 167():563-572. PubMed ID: 28340762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of whey quality with NIR spectroscopy--a feasibility study.
    Kucheryavskiy S; Lomborg CJ
    Food Chem; 2015 Jun; 176():271-7. PubMed ID: 25624233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of individual milk proteins including free amino acids in bovine milk using mid-infrared spectroscopy and their correlations with milk processing characteristics.
    McDermott A; Visentin G; De Marchi M; Berry DP; Fenelon MA; O'Connor PM; Kenny OA; McParland S
    J Dairy Sci; 2016 Apr; 99(4):3171-3182. PubMed ID: 26830742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Determination of fat, protein and DM in raw milk by portable short-wave near infrared spectrometer].
    Li XY; Wang JH; Huang YW; Han DH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):665-8. PubMed ID: 21595214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance specifications for infrared milk analysis.
    Biggs DA
    J Assoc Off Anal Chem; 1979 Nov; 62(6):1211-4. PubMed ID: 521408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near Infrared Spectroscopy (NIRS) for the determination of the milk fat fatty acid profile of goats.
    Núñez-Sánchez N; Martínez-Marín AL; Polvillo O; Fernández-Cabanás VM; Carrizosa J; Urrutia B; Serradilla JM
    Food Chem; 2016 Jan; 190():244-252. PubMed ID: 26212967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.