BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8634912)

  • 1. Regulated ribosomal frameshifting by an RNA-protein interaction.
    Kollmus H; Hentze MW; Hauser H
    RNA; 1996 Apr; 2(4):316-23. PubMed ID: 8634912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The virion-associated Gag-Pol is decreased in chimeric Moloney murine leukemia viruses in which the readthrough region is replaced by the frameshift region of the human immunodeficiency virus type 1.
    Gendron K; Dulude D; Lemay G; Ferbeyre G; Brakier-Gingras L
    Virology; 2005 Apr; 334(2):342-52. PubMed ID: 15780884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the structure of the regulatory region of human transferrin receptor messenger RNA and its interaction with iron regulatory protein-1.
    Schlegl J; Gegout V; Schläger B; Hentze MW; Westhof E; Ehresmann C; Ehresmann B; Romby P
    RNA; 1997 Oct; 3(10):1159-72. PubMed ID: 9326491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA signals for translation frameshift: influence of stem size and slippery sequence.
    Honda A; Nakamura T; Nishimura S
    Biochem Biophys Res Commun; 1995 Aug; 213(2):575-82. PubMed ID: 7646514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of ribosomal frameshifting by oligonucleotides targeted to the HIV gag-pol region.
    Vickers TA; Ecker DJ
    Nucleic Acids Res; 1992 Aug; 20(15):3945-53. PubMed ID: 1508680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E. coli ribosomes re-phase on retroviral frameshift signals at rates ranging from 2 to 50 percent.
    Weiss RB; Dunn DM; Shuh M; Atkins JF; Gesteland RF
    New Biol; 1989 Nov; 1(2):159-69. PubMed ID: 2562219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of translation frameshift by upstream termination codon.
    Honda A; Nishimura S
    Biochem Biophys Res Commun; 1996 Apr; 221(3):602-8. PubMed ID: 8630007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the RNA signal essential for translational frameshifting in HIV-1.
    Gaudin C; Mazauric MH; Traïkia M; Guittet E; Yoshizawa S; Fourmy D
    J Mol Biol; 2005 Jun; 349(5):1024-35. PubMed ID: 15907937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and biochemical characterization of iron regulatory proteins 1 and 2 in Saccharomyces cerevisiae.
    Phillips JD; Guo B; Yu Y; Brown FM; Leibold EA
    Biochemistry; 1996 Dec; 35(49):15704-14. PubMed ID: 8961933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer's diseased brains.
    Piñero DJ; Hu J; Connor JR
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):761-76. PubMed ID: 10875438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1.
    Dulude D; Baril M; Brakier-Gingras L
    Nucleic Acids Res; 2002 Dec; 30(23):5094-102. PubMed ID: 12466532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of RNA-binding surfaces in iron regulatory protein-1.
    Kaldy P; Menotti E; Moret R; Kühn LC
    EMBO J; 1999 Nov; 18(21):6073-83. PubMed ID: 10545118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translational regulation in vivo of the Drosophila melanogaster mRNA encoding succinate dehydrogenase iron protein via iron responsive elements.
    Melefors O
    Biochem Biophys Res Commun; 1996 Apr; 221(2):437-41. PubMed ID: 8619873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal.
    Bidou L; Stahl G; Grima B; Liu H; Cassan M; Rousset JP
    RNA; 1997 Oct; 3(10):1153-8. PubMed ID: 9326490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the Gag-Pol transframe domain p6* and its coding sequence to morphogenesis and replication of human immunodeficiency virus type 1.
    Paulus C; Ludwig C; Wagner R
    Virology; 2004 Dec; 330(1):271-83. PubMed ID: 15527852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity.
    Garcia-Miranda P; Becker JT; Benner BE; Blume A; Sherer NM; Butcher SE
    J Virol; 2016 Aug; 90(15):6906-6917. PubMed ID: 27194769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of coordinate control of ferritin and transferrin receptor expression during rat liver regeneration.
    Cairo G; Tacchini L; Pietrangelo A
    Hepatology; 1998 Jul; 28(1):173-8. PubMed ID: 9657110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of RNA elements that regulate gag-pol ribosomal frameshifting in equine infectious anemia virus.
    Chen C; Montelaro RC
    J Virol; 2003 Oct; 77(19):10280-7. PubMed ID: 12970412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the role of the pseudoknot component in the SRV-1 gag-pro ribosomal frameshift signal: loop lengths and stability of the stem regions.
    ten Dam EB; Verlaan PW; Pleij CW
    RNA; 1995 Apr; 1(2):146-54. PubMed ID: 7585244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.