BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 8635475)

  • 1. Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants.
    Li H; Nicholson AW
    EMBO J; 1996 Mar; 15(6):1421-33. PubMed ID: 8635475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribonuclease III cleavage of a bacteriophage T7 processing signal. Divalent cation specificity, and specific anion effects.
    Li HL; Chelladurai BS; Zhang K; Nicholson AW
    Nucleic Acids Res; 1993 Apr; 21(8):1919-25. PubMed ID: 8493105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved sequence element in ribonuclease III processing signals is not required for accurate in vitro enzymatic cleavage.
    Chelladurai BS; Li H; Nicholson AW
    Nucleic Acids Res; 1991 Apr; 19(8):1759-66. PubMed ID: 1709490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of a ribonuclease III processing signal.
    Chelladurai B; Li H; Zhang K; Nicholson AW
    Biochemistry; 1993 Jul; 32(29):7549-58. PubMed ID: 8338852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III.
    Calin-Jageman I; Nicholson AW
    Nucleic Acids Res; 2003 May; 31(9):2381-92. PubMed ID: 12711683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethidium-dependent uncoupling of substrate binding and cleavage by Escherichia coli ribonuclease III.
    Calin-Jageman I; Amarasinghe AK; Nicholson AW
    Nucleic Acids Res; 2001 May; 29(9):1915-25. PubMed ID: 11328875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant.
    Sun W; Nicholson AW
    Biochemistry; 2001 Apr; 40(16):5102-10. PubMed ID: 11305928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic double-stranded-RNA processing activity of Escherichia coli ribonuclease III lacking the dsRNA-binding domain.
    Sun W; Jun E; Nicholson AW
    Biochemistry; 2001 Dec; 40(49):14976-84. PubMed ID: 11732918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate enzymatic cleavage in vitro of a 2'-deoxyribose-substituted ribonuclease III processing signal.
    Nicholson AW
    Biochim Biophys Acta; 1992 Feb; 1129(3):318-22. PubMed ID: 1536883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate in vitro cleavage by RNase III of phosphorothioate-substituted RNA processing signals in bacteriophage T7 early mRNA.
    Nicholson AW; Niebling KR; McOsker PL; Robertson HD
    Nucleic Acids Res; 1988 Feb; 16(4):1577-91. PubMed ID: 3279395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNase D, a reported new activity associated with HIV-1 reverse transcriptase, displays the same cleavage specificity as Escherichia coli RNase III.
    Hostomsky Z; Hudson GO; Rahmati S; Hostomska Z
    Nucleic Acids Res; 1992 Nov; 20(21):5819-24. PubMed ID: 1280810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III--the effect of dsRNA binding on gene expression.
    Dasgupta S; Fernandez L; Kameyama L; Inada T; Nakamura Y; Pappas A; Court DL
    Mol Microbiol; 1998 May; 28(3):629-40. PubMed ID: 9632264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ribonuclease III processing by double-helical sequence antideterminants.
    Zhang K; Nicholson AW
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13437-41. PubMed ID: 9391043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of a ribonuclease III processing signal.
    Schweisguth DC; Chelladurai BS; Nicholson AW; Moore PB
    Nucleic Acids Res; 1994 Feb; 22(4):604-12. PubMed ID: 8127710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis.
    Sun W; Pertzev A; Nicholson AW
    Nucleic Acids Res; 2005; 33(3):807-15. PubMed ID: 15699182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the RNA determinants for bacterial and yeast RNase III binding and cleavage.
    Lamontagne B; Elela SA
    J Biol Chem; 2004 Jan; 279(3):2231-41. PubMed ID: 14581474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis.
    Warnecke JM; Held R; Busch S; Hartmann RK
    J Mol Biol; 1999 Jul; 290(2):433-45. PubMed ID: 10390342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage.
    Warnecke JM; Sontheimer EJ; Piccirilli JA; Hartmann RK
    Nucleic Acids Res; 2000 Feb; 28(3):720-7. PubMed ID: 10637323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of an RNA internal loop as a reactivity epitope for Escherichia coli ribonuclease III substrates.
    Calin-Jageman I; Nicholson AW
    Biochemistry; 2003 May; 42(17):5025-34. PubMed ID: 12718545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.