BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 8635517)

  • 21. HB-GAM/pleiotrophin but not RIHB/midkine enhances chondrogenesis in micromass culture.
    Dreyfus J; Brunet-de Carvalho N; Duprez D; Raulais D; Vigny M
    Exp Cell Res; 1998 May; 241(1):171-80. PubMed ID: 9633525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal and spatial analysis of hyaluronidase activity during development of the embryonic chick limb bud.
    Kulyk WM; Kosher RA
    Dev Biol; 1987 Apr; 120(2):535-41. PubMed ID: 3556767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fibronectin mRNA alternative splicing is temporally and spatially regulated during chondrogenesis in vivo and in vitro.
    Gehris AL; Oberlender SA; Shepley KJ; Tuan RS; Bennett VD
    Dev Dyn; 1996 Jun; 206(2):219-30. PubMed ID: 8725289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Latex beads as probes of cell surface-extracellular matrix interactions during chondrogenesis: evidence for a role for amino-terminal heparin-binding domain of fibronectin.
    Frenz DA; Akiyama SK; Paulsen DF; Newman SA
    Dev Biol; 1989 Nov; 136(1):87-96. PubMed ID: 2509263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term in vitro analysis of limb cartilage development: involvement of Wnt signaling.
    Daumer KM; Tufan AC; Tuan RS
    J Cell Biochem; 2004 Oct; 93(3):526-41. PubMed ID: 15372624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wif-1 is expressed at cartilage-mesenchyme interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis.
    Surmann-Schmitt C; Widmann N; Dietz U; Saeger B; Eitzinger N; Nakamura Y; Rattel M; Latham R; Hartmann C; von der Mark H; Schett G; von der Mark K; Stock M
    J Cell Sci; 2009 Oct; 122(Pt 20):3627-37. PubMed ID: 19755491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.
    Gamer LW; Cox KA; Small C; Rosen V
    Dev Biol; 2001 Jan; 229(2):407-20. PubMed ID: 11203700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hox gene expression, AV-1 antigen expression, and cartilage pattern formation in chick recombinant limb buds.
    Wada N; Ohsugi K; Yokouchi Y; Kuroiwa A; Ide H
    J Exp Zool; 1998 May; 281(1):26-35. PubMed ID: 9571766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of a monoclonal antibody by in vitro immunization that recognizes a native chondroitin sulfate epitope in the embryonic chick limb and heart.
    Capehart AA; Wienecke MM; Kitten GT; Solursh M; Krug EL
    J Histochem Cytochem; 1997 Nov; 45(11):1567-81. PubMed ID: 9358858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-Cadherin expression and signaling in limb mesenchymal chondrogenesis: stimulation by poly-L-lysine.
    Woodward WA; Tuan RS
    Dev Genet; 1999; 24(1-2):178-87. PubMed ID: 10079520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification of the cell cycle of limb bud mesenchyme during in vitro cartilage differentiation.
    Hadházy C; Szöllösi J
    Acta Biol Hung; 1983; 34(4):407-14. PubMed ID: 6237535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation of precursor myogenic and chondrogenic cells in early limb bud mesenchyme by a monoclonal antibody.
    Sasse J; Horwitz A; Pacifici M; Holtzer H
    J Cell Biol; 1984 Nov; 99(5):1856-66. PubMed ID: 6386829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Successive formative stages of precartilaginous mesenchymal condensations in vitro: modulation of cell adhesion by Wnt-7A and BMP-2.
    Stott NS; Jiang TX; Chuong CM
    J Cell Physiol; 1999 Sep; 180(3):314-24. PubMed ID: 10430171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Divide, accumulate, differentiate: cell condensation in skeletal development revisited.
    Hall BK; Miyake T
    Int J Dev Biol; 1995 Dec; 39(6):881-93. PubMed ID: 8901191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transforming growth factor-beta and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro.
    Roark EF; Greer K
    Dev Dyn; 1994 Jun; 200(2):103-16. PubMed ID: 7919498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ hybridization and immunohistochemistry of versican, aggrecan and link protein, and histochemistry of hyaluronan in the developing mouse limb bud cartilage.
    Shibata S; Fukada K; Imai H; Abe T; Yamashita Y
    J Anat; 2003 Oct; 203(4):425-32. PubMed ID: 14620382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of 5' HoxD genes in chondrogenesis in vitro.
    Jung JC; Tsonis PA
    Int J Dev Biol; 1998 May; 42(4):609-15. PubMed ID: 9694632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb.
    Thorogood PV; Hinchliffe JR
    J Embryol Exp Morphol; 1975 Jun; 33(3):581-606. PubMed ID: 1176861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in the expression of fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning.
    Szebenyi G; Savage MP; Olwin BB; Fallon JF
    Dev Dyn; 1995 Dec; 204(4):446-56. PubMed ID: 8601037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Matrix accumulation and retention in embryonic cartilage and in vitro chondrogenesis.
    Maleski MP; Knudson CB
    Connect Tissue Res; 1996; 34(1):75-86. PubMed ID: 8835850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.