These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 8635584)
61. Short, strong hydrogen bonds at the active site of human acetylcholinesterase: proton NMR studies. Massiah MA; Viragh C; Reddy PM; Kovach IM; Johnson J; Rosenberry TL; Mildvan AS Biochemistry; 2001 May; 40(19):5682-90. PubMed ID: 11341833 [TBL] [Abstract][Full Text] [Related]
62. Pressure and heat inactivation of recombinant human acetylcholinesterase. Importance of residue E202 for enzyme stability. Cléry-Barraud C; Ordentlich A; Grosfeld H; Shafferman A; Masson P Eur J Biochem; 2002 Sep; 269(17):4297-307. PubMed ID: 12199708 [TBL] [Abstract][Full Text] [Related]
64. Effect of activation of protein phosphatase 1 on sulfhydryl reactivity. Chu Y; Lee EY; Reimann EM; Wilson SE; Schlender KK Arch Biochem Biophys; 1996 Oct; 334(1):83-8. PubMed ID: 8837742 [TBL] [Abstract][Full Text] [Related]
65. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase. Trimboli AJ; Quinn GB; Smith ET; Barber MJ Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690 [TBL] [Abstract][Full Text] [Related]
67. Disulfiram irreversibly aggregates betaine aldehyde dehydrogenase--a potential target for antimicrobial agents against Pseudomonas aeruginosa. Velasco-García R; Zaldívar-Machorro VJ; Mújica-Jiménez C; González-Segura L; Muñoz-Clares RA Biochem Biophys Res Commun; 2006 Mar; 341(2):408-15. PubMed ID: 16426571 [TBL] [Abstract][Full Text] [Related]
68. Importance of sulfhydryl group for rabbit gastric lipase activity. Moreau H; Gargouri Y; Pieroni G; Verger R FEBS Lett; 1988 Aug; 236(2):383-7. PubMed ID: 3410049 [TBL] [Abstract][Full Text] [Related]
69. Soluble human core 2 beta6-N-acetylglucosaminyltransferase C2GnT1 requires its conserved cysteine residues for full activity. Yang X; Qin W; Lehotay M; Toki D; Dennis P; Schutzbach JS; Brockhausen I Biochim Biophys Acta; 2003 May; 1648(1-2):62-74. PubMed ID: 12758148 [TBL] [Abstract][Full Text] [Related]
70. The pH dependence of dealkylation in soman-inhibited cholinesterases and their mutants: further evidence for a push-pull mechanism. Saxena A; Viragh C; Frazier DS; Kovach IM; Maxwell DM; Lockridge O; Doctor BP Biochemistry; 1998 Oct; 37(43):15086-96. PubMed ID: 9790671 [TBL] [Abstract][Full Text] [Related]
71. Comparative kinetic analysis of cholinesterase methods in rat and human erythrocytes and plasma. Dass PD; Offutt DM; Mejia MB; VanGoethem D; Christenson WR; Landes MM; Stuart BP; Sangha GK; Thyssen JH Vet Hum Toxicol; 1997 Feb; 39(1):11-7. PubMed ID: 9004460 [TBL] [Abstract][Full Text] [Related]
72. Formation of mixed disulfide adducts at cysteine-281 of the lactose repressor protein affects operator and inducer binding parameters. Daly TJ; Olson JS; Matthews KS Biochemistry; 1986 Sep; 25(19):5468-74. PubMed ID: 3535878 [TBL] [Abstract][Full Text] [Related]
73. [Effect of thiol reagents on the activity of NADP-dependent malate dehydrogenase isolated from bovine adrenal cortex cytoplasm]. Senkevich SB; Strumilo SA; Vinogradov VV Ukr Biokhim Zh (1978); 1987; 59(6):64-7. PubMed ID: 3433383 [TBL] [Abstract][Full Text] [Related]
74. 3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 A resolution: kinetic and molecular dynamic correlates. Dvir H; Wong DM; Harel M; Barril X; Orozco M; Luque FJ; Muñoz-Torrero D; Camps P; Rosenberry TL; Silman I; Sussman JL Biochemistry; 2002 Mar; 41(9):2970-81. PubMed ID: 11863435 [TBL] [Abstract][Full Text] [Related]
75. A tryptophan in the bottleneck of the catalytic gorge of an invertebrate acetylcholinesterase confers relative resistance to carbamate and organophosphate inhibitors. Patel R; Sanders R; Brown L; Baker S; Tsigelny I; Pezzementi L Cell Biochem Biophys; 2006; 46(3):253-64. PubMed ID: 17272851 [TBL] [Abstract][Full Text] [Related]
76. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design. Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167 [TBL] [Abstract][Full Text] [Related]
77. Elements of the C-terminal t peptide of acetylcholinesterase that determine amphiphilicity, homomeric and heteromeric associations, secretion and degradation. Belbeoc'h S; Falasca C; Leroy J; Ayon A; Massoulié J; Bon S Eur J Biochem; 2004 Apr; 271(8):1476-87. PubMed ID: 15066173 [TBL] [Abstract][Full Text] [Related]
78. Allosteric behaviour of 1:5 hybrids of mutant subunits of Clostridium symbiosum glutamate dehydrogenase differing in their amino acid specificity. Goyal A; Wang XG; Engel PC Biochem J; 2001 Dec; 360(Pt 3):651-6. PubMed ID: 11736656 [TBL] [Abstract][Full Text] [Related]
79. New findings about Ellman's method to determine cholinesterase activity. Komersová A; Komers K; Cegan A Z Naturforsch C J Biosci; 2007; 62(1-2):150-4. PubMed ID: 17425121 [TBL] [Abstract][Full Text] [Related]
80. A novel class of acetylcholinesterase, revealed by mutations, in the nematode Caenorhabditis elegans. Kolson DL; Russell RL J Neurogenet; 1985 Apr; 2(2):93-110. PubMed ID: 4020535 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]