BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 8635904)

  • 1. Neutron induced recoil protons of restricted energy and range and biological effectiveness.
    Geard CR
    Health Phys; 1996 Jun; 70(6):804-11. PubMed ID: 8635904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of 1.9 MeV monoenergetic neutrons on Vicia faba chromosomes: microdosimetric considerations.
    Geard CR
    Radiat Environ Biophys; 1980; 18(2):79-89. PubMed ID: 6256802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microdosimetry and chromosome aberrations: effects of 230 keV neutrons on Vicia faba chromosomes.
    Geard CR
    Mutat Res; 1977 Sep; 44(3):345-58. PubMed ID: 904648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast neutron energy based modelling of biological effectiveness with implications for proton and ion beams.
    Jones B
    Phys Med Biol; 2021 Feb; 66(4):045028. PubMed ID: 33472183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome aberrations in human fibroblasts induced by monoenergetic neutrons. I. Relative biological effectiveness.
    Pandita TK; Geard CR
    Radiat Res; 1996 Jun; 145(6):730-9. PubMed ID: 8643833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of asymmetrical type of chromosomal aberrations in cultured human lymphocytes by ion beams of different energies at varying LET from HIMAC and RRC.
    Ohara H; Okazaki N; Monobe M; Watanabe S; Kanayama M; Minamihisamatsu M
    Adv Space Res; 1998; 22(12):1673-82. PubMed ID: 11542411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RBE of quasi-monoenergetic 60 MeV neutron radiation for induction of dicentric chromosomes in human lymphocytes.
    Nolte R; Mühlbradt KH; Meulders JP; Stephan G; Haney M; Schmid E
    Radiat Environ Biophys; 2005 Dec; 44(3):201-9. PubMed ID: 16283348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effectiveness of monoenergetic neutrons at 565 keV in producing dicentric chromosomes in human lymphocytes at low doses.
    Schmid E; Regulla D; Guldbakke S; Schlegel D; Bauchinger M
    Radiat Res; 2000 Sep; 154(3):307-12. PubMed ID: 10956437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oncogenic transformation of C3H 10T1/2 cells by acute and protracted exposures to monoenergetic neutrons.
    Miller RC; Hall EJ
    Radiat Res; 1991 Oct; 128(1 Suppl):S60-4. PubMed ID: 1924750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The production of chromosome aberration in Chinese hamster fibroblasts exposed to 24 keV neutrons.
    Roberts CJ; Morgan GR; Holt PD
    Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Feb; 51(2):341-51. PubMed ID: 3493994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micronucleus induction in Vicia faba roots. Part 2. Biological effects of neutrons below 1 cGy.
    Marshall I; Bianchi M
    Int J Radiat Biol Relat Stud Phys Chem Med; 1983 Aug; 44(2):163-73. PubMed ID: 6603437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutron energy-dependent initial DNA damage and chromosomal exchange.
    Tanaka K; Gajendiran N; Endo S; Komatsu K; Hoshi M; Kamada N
    J Radiat Res; 1999 Dec; 40 Suppl():36-44. PubMed ID: 10804992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiobiology with heavy charged particles: a historical review.
    Skarsgard LD
    Phys Med; 1998 Jul; 14 Suppl 1():1-19. PubMed ID: 11542635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charged particle radiobiology beamline using tandem accelerator-based MeV protons and carbon ions: a pilot study on the track-end radiation quality, variable biological effectiveness and Bayesian beam dosimetry.
    Li X; Zhang W; Wang X; Chen X; Pan H; Ruan Y; Khaledi N; Wei T; He X; Zhuo W; Shao C; Pan Y; Shi L; Fu S; Wang X
    Phys Med Biol; 2019 Aug; 64(16):165004. PubMed ID: 31096198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of the response functions of a large size NE213 organic liquid scintillator for neutrons up to 800 MeV.
    Taniguchi S; Moriya T; Takada M; Hatanaka K; Wakasa T; Saito T
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):175-9. PubMed ID: 16604622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of lineal-energy distributions for neutrons of 8 keV to 65 MeV by using a tissue-equivalent proportional counter.
    Nunomiya T; Kim E; Kurosaw T; Taniguchi S; Nakamura T; Nakane Y; Sakamoto Y; Tanaka S
    Radiat Prot Dosimetry; 2002; 102(1):49-59. PubMed ID: 12212902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating mixed field effects: an application supporting the lack of a non-linear component for chromosome aberration induction by neutrons.
    Ballarini F; Biaggi M; Edwards A; Ferrari A; Ottolenghi A; Pelliccioni M; Scannicchio D
    Radiat Prot Dosimetry; 2003; 103(1):19-28. PubMed ID: 12596985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron-energy-dependent cell survival and oncogenic transformation.
    Miller RC; Marino SA; Martin SG; Komatsu K; Geard CR; Brenner DJ; Hall EJ
    J Radiat Res; 1999 Dec; 40 Suppl():53-9. PubMed ID: 10804994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RBE of nearly monoenergetic neutrons at energies of 36 keV-14.6 MeV for induction of dicentrics in human lymphocytes.
    Schmid E; Schlegel D; Guldbakke S; Kapsch RP; Regulla D
    Radiat Environ Biophys; 2003 Jul; 42(2):87-94. PubMed ID: 12844222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.