BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 8636016)

  • 1. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides.
    Marty-Teysset C; Posthuma C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Bacteriol; 1996 Apr; 178(8):2178-85. PubMed ID: 8636016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides.
    Marty-Teysset C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Biol Chem; 1995 Oct; 270(43):25370-6. PubMed ID: 7592702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the citrate transporters in carbohydrate and citrate cometabolism in Lactococcus and Leuconostoc species.
    Bandell M; Lhotte ME; Marty-Teysset C; Veyrat A; Prévost H; Dartois V; Diviès C; Konings WN; Lolkema JS
    Appl Environ Microbiol; 1998 May; 64(5):1594-600. PubMed ID: 9572922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The citrate metabolic pathway in Leuconostoc mesenteroides: expression, amino acid synthesis, and alpha-ketocarboxylate transport.
    Marty-Teysset C; Lolkema JS; Schmitt P; Diviès C; Konings WN
    J Bacteriol; 1996 Nov; 178(21):6209-15. PubMed ID: 8892820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos.
    Ramos A; Poolman B; Santos H; Lolkema JS; Konings WN
    J Bacteriol; 1994 Aug; 176(16):4899-905. PubMed ID: 8051003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family.
    Bandell M; Ansanay V; Rachidi N; Dequin S; Lolkema JS
    J Biol Chem; 1997 Jul; 272(29):18140-6. PubMed ID: 9218448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy.
    Poolman B; Molenaar D; Smid EJ; Ubbink T; Abee T; Renault PP; Konings WN
    J Bacteriol; 1991 Oct; 173(19):6030-7. PubMed ID: 1917837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH.
    Magni C; de Mendoza D; Konings WN; Lolkema JS
    J Bacteriol; 1999 Mar; 181(5):1451-7. PubMed ID: 10049375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselectivity of the membrane potential-generating citrate and malate transporters of lactic acid bacteria.
    Bandell M; Lolkema JS
    Biochemistry; 1999 Aug; 38(32):10352-60. PubMed ID: 10441129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos.
    Salema M; Poolman B; Lolkema JS; Dias MC; Konings WN
    Eur J Biochem; 1994 Oct; 225(1):289-95. PubMed ID: 7925448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris.
    Özcan E; Selvi SS; Nikerel E; Teusink B; Toksoy Öner E; Çakır T
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):3153-3165. PubMed ID: 30712128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proton motive force generated in Leuconostoc oenos by L-malate fermentation.
    Salema M; Lolkema JS; San Romão MV; Lourero Dias MC
    J Bacteriol; 1996 Jun; 178(11):3127-32. PubMed ID: 8655490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni).
    Salema M; Capucho I; Poolman B; San Romão MV; Dias MC
    J Bacteriol; 1996 Sep; 178(18):5537-9. PubMed ID: 8808948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides.
    Schmitt P; Vasseur C; Phalip V; Huang DQ; Diviès C; Prévost H
    Appl Microbiol Biotechnol; 1997 Jun; 47(6):715-8. PubMed ID: 9237392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.
    Konings WN; Lolkema JS; Bolhuis H; van Veen HW; Poolman B; Driessen AJ
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):117-28. PubMed ID: 9049023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of scalar protons in metabolic energy generation in lactic acid bacteria.
    Lolkema JS; Poolman B; Konings WN
    J Bioenerg Biomembr; 1995 Aug; 27(4):467-73. PubMed ID: 8595982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Citrate uptake in exchange with intermediates in the citrate metabolic pathway in Lactococcus lactis IL1403.
    Pudlik AM; Lolkema JS
    J Bacteriol; 2011 Feb; 193(3):706-14. PubMed ID: 21115655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conserved C-terminus of the citrate (CitP) and malate (MleP) transporters of lactic acid bacteria is involved in substrate recognition.
    Bandell M; Lolkema JS
    Biochemistry; 2000 Oct; 39(42):13059-67. PubMed ID: 11041872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.
    Pudlik AM; Lolkema JS
    J Bacteriol; 2011 Aug; 193(16):4049-56. PubMed ID: 21665973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.