These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 8636016)

  • 21. Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active D-lactate dehydrogenase.
    Li L; Shin SY; Lee KW; Han NS
    Lett Appl Microbiol; 2014 Oct; 59(4):404-11. PubMed ID: 24888766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of D-lactate content in sauerkraut using starter cultures of recombinant Leuconostoc mesenteroides expressing the ldhL gene.
    Jin Q; Li L; Moon JS; Cho SK; Kim YJ; Lee SJ; Han NS
    J Biosci Bioeng; 2016 May; 121(5):479-83. PubMed ID: 26472127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism and energetics of a citrate-transport system of Klebsiella pneumoniae.
    Van der Rest ME; Abee T; Molenaar D; Konings WN
    Eur J Biochem; 1991 Jan; 195(1):71-7. PubMed ID: 1991478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arg-425 of the citrate transporter CitP is responsible for high affinity binding of di- and tricarboxylates.
    Bandell M; Lolkema JS
    J Biol Chem; 2000 Dec; 275(50):39130-6. PubMed ID: 10993891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrogenic malate uptake and improved growth energetics of the malolactic bacterium Leuconostoc oenos grown on glucose-malate mixtures.
    Loubiere P; Salou P; Leroy MJ; Lindley ND; Pareilleux A
    J Bacteriol; 1992 Aug; 174(16):5302-8. PubMed ID: 1644757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    Arch Biochem Biophys; 1990 Jun; 279(2):386-94. PubMed ID: 2350185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dextransucrase secretion in Leuconostoc mesenteroides depends on the presence of a transmembrane proton gradient.
    Otts DR; Day DF
    J Bacteriol; 1988 Nov; 170(11):5006-11. PubMed ID: 2972694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of lactose-citrate co-metabolism on the differences of growth and energetics in Leuconostoc lactis, Leuconostoc mesenteroides ssp. mesenteroides and Leuconostoc mesenteroides ssp. cremoris.
    Hache C; Cachon R; Wache Y; Belguendouz T; Riondet C; Deraedt A; Divies C
    Syst Appl Microbiol; 1999 Dec; 22(4):507-13. PubMed ID: 10794137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of Na(+)-dependent citrate transport in Klebsiella pneumoniae.
    van der Rest ME; Molenaar D; Konings WN
    J Bacteriol; 1992 Aug; 174(15):4893-8. PubMed ID: 1629151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrogenic L-malate transport by Lactobacillus plantarum: a basis for energy derivation from malolactic fermentation.
    Olsen EB; Russell JB; Henick-Kling T
    J Bacteriol; 1991 Oct; 173(19):6199-206. PubMed ID: 1917854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual effect of organic acids as a function of external pH in Oenococcus oeni.
    Augagneur Y; Ritt JF; Linares DM; Remize F; Tourdot-Maréchal R; Garmyn D; Guzzo J
    Arch Microbiol; 2007 Aug; 188(2):147-57. PubMed ID: 17406856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic organization and expression of citrate permease in lactic acid bacteria.
    Drider D; Bekal S; Prévost H
    Genet Mol Res; 2004 Jun; 3(2):273-81. PubMed ID: 15266398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate specificity of the citrate transporter CitP of Lactococcus lactis.
    Pudlik AM; Lolkema JS
    J Bacteriol; 2012 Jul; 194(14):3627-35. PubMed ID: 22563050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose.
    Salou P; Loubiere P; Pareilleux A
    Appl Environ Microbiol; 1994 May; 60(5):1459-66. PubMed ID: 8017930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The properties of citrate transport in membrane vesicles from Bacillus subtilis.
    Bergsma J; Konings WN
    Eur J Biochem; 1983 Jul; 134(1):151-6. PubMed ID: 6305655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemiosmotic energy from malolactic fermentation.
    Cox DJ; Henick-Kling T
    J Bacteriol; 1989 Oct; 171(10):5750-2. PubMed ID: 2793835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the major dehydrogenase related to d-lactic acid synthesis in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293.
    Li L; Eom HJ; Park JM; Seo E; Ahn JE; Kim TJ; Kim JH; Han NS
    Enzyme Microb Technol; 2012 Oct; 51(5):274-9. PubMed ID: 22975125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of an electrochemical proton gradient by lactate efflux in membrane vesicles of Escherichia coli.
    Ten Brink B; Konings WN
    Eur J Biochem; 1980 Oct; 111(1):59-66. PubMed ID: 7002561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of temperature and pH on production of two bacteriocins by Leuconostoc mesenteroides subsp. mesenteroides FR52 during batch fermentation.
    Krier F; Revol-Junelles AM; Germain P
    Appl Microbiol Biotechnol; 1998 Sep; 50(3):359-63. PubMed ID: 9802221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical proton gradient and lactate concentration gradient in Streptococcus cremoris cells grown in batch culture.
    ten Brink B; Konings WN
    J Bacteriol; 1982 Nov; 152(2):682-6. PubMed ID: 7130128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.