These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8636034)

  • 1. The proton/electron ration of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in "Dehalobacter restrictus".
    Schumacher W; Holliger C
    J Bacteriol; 1996 Apr; 178(8):2328-33. PubMed ID: 8636034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on tetrachloroethene respiration in Dehalospirillum multivorans.
    Miller E; Wohlfarth G; Diekert G
    Arch Microbiol; 1996 Dec; 166(6):379-87. PubMed ID: 9082914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the membrane-bound hydrogenase in the energy-conserving oxidation of molecular hydrogen by Escherichia coli.
    Jones RW
    Biochem J; 1980 May; 188(2):345-50. PubMed ID: 6249272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus.
    Maillard J; Schumacher W; Vazquez F; Regeard C; Hagen WR; Holliger C
    Appl Environ Microbiol; 2003 Aug; 69(8):4628-38. PubMed ID: 12902251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes.
    Biel S; Simon J; Gross R; Ruiz T; Ruitenberg M; Kröger A
    Eur J Biochem; 2002 Apr; 269(7):1974-83. PubMed ID: 11952800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth.
    Holliger C; Schraa G; Stams AJ; Zehnder AJ
    Appl Environ Microbiol; 1993 Sep; 59(9):2991-7. PubMed ID: 8215370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioenergetic aspects of archaeal and bacterial hydrogen metabolism.
    Pinske C
    Adv Microb Physiol; 2019; 74():487-514. PubMed ID: 31126536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli.
    Pinske C; Jaroschinsky M; Linek S; Kelly CL; Sargent F; Sawers RG
    J Bacteriol; 2015 Jan; 197(2):296-306. PubMed ID: 25368299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate hydrophobicity and cell composition influence the extent of rate limitation and masking of isotope fractionation during microbial reductive dehalogenation of chlorinated ethenes.
    Renpenning J; Rapp I; Nijenhuis I
    Environ Sci Technol; 2015 Apr; 49(7):4293-301. PubMed ID: 25734359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes strain 195.
    Nijenhuis I; Zinder SH
    Appl Environ Microbiol; 2005 Mar; 71(3):1664-7. PubMed ID: 15746376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium.
    Friedrich M; Schink B
    Eur J Biochem; 1993 Oct; 217(1):233-40. PubMed ID: 8223560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on hydrogenase activity and chlorobenzene respiration in Dehalococcoides sp. strain CBDB1.
    Jayachandran G; Görisch H; Adrian L
    Arch Microbiol; 2004 Dec; 182(6):498-504. PubMed ID: 15490122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential.
    Schirawski J; Unden G
    Eur J Biochem; 1998 Oct; 257(1):210-5. PubMed ID: 9799121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis.
    Maymó-Gatell X; Tandoi V; Gossett JM; Zinder SH
    Appl Environ Microbiol; 1995 Nov; 61(11):3928-33. PubMed ID: 8526505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE.
    Lee IS; Bae JH; McCarty PL
    J Contam Hydrol; 2007 Oct; 94(1-2):76-85. PubMed ID: 17610987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene.
    Wild A; Hermann R; Leisinger T
    Biodegradation; 1996-1997; 7(6):507-11. PubMed ID: 9188197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol.
    Fung JM; Morris RM; Adrian L; Zinder SH
    Appl Environ Microbiol; 2007 Jul; 73(14):4439-45. PubMed ID: 17513589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans: substrate specificity of the native enzyme and its corrinoid cofactor.
    Neumann A; Siebert A; Trescher T; Reinhardt S; Wohlfarth G; Diekert G
    Arch Microbiol; 2002 May; 177(5):420-6. PubMed ID: 11976751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase.
    Schnorpfeil M; Janausch IG; Biel S; Kröger A; Unden G
    Eur J Biochem; 2001 May; 268(10):3069-74. PubMed ID: 11358526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2.
    Gross R; Simon J; Lancaster CR; Kröger A
    Mol Microbiol; 1998 Nov; 30(3):639-46. PubMed ID: 9822828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.