These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 8636059)

  • 1. Two transcription factors, Gln3p and Nil1p, use the same GATAAG sites to activate the expression of GAP1 of Saccharomyces cerevisiae.
    Stanbrough M; Magasanik B
    J Bacteriol; 1996 Apr; 178(8):2465-8. PubMed ID: 8636059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes.
    Stanbrough M; Rowen DW; Magasanik B
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9450-4. PubMed ID: 7568152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of GATA factor Nil2p in nitrogen regulation of gene expression in Saccharomyces cerevisiae.
    Rowen DW; Esiobu N; Magasanik B
    J Bacteriol; 1997 Jun; 179(11):3761-6. PubMed ID: 9171427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p.
    Cox KH; Rai R; Distler M; Daugherty JR; Coffman JA; Cooper TG
    J Biol Chem; 2000 Jun; 275(23):17611-8. PubMed ID: 10748041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The minimal transactivation region of Saccharomyces cerevisiae Gln3p is localized to 13 amino acids.
    Svetlov V; Cooper TG
    J Bacteriol; 1997 Dec; 179(24):7644-52. PubMed ID: 9401021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae.
    Blinder D; Coschigano PW; Magasanik B
    J Bacteriol; 1996 Aug; 178(15):4734-6. PubMed ID: 8755910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae.
    André B; Talibi D; Soussi Boudekou S; Hein C; Vissers S; Coornaert D
    Nucleic Acids Res; 1995 Feb; 23(4):558-64. PubMed ID: 7899075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae.
    Soussi-Boudekou S; André B
    Mol Microbiol; 1999 Feb; 31(3):753-62. PubMed ID: 10048020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae.
    Oliveira EM; Mansure JJ; Bon EP
    FEMS Yeast Res; 2005 Apr; 5(6-7):605-9. PubMed ID: 15780659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urmylation controls Nil1p and Gln3p-dependent expression of nitrogen-catabolite repressed genes in Saccharomyces cerevisiae.
    Rubio-Texeira M
    FEBS Lett; 2007 Feb; 581(3):541-50. PubMed ID: 17254574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae.
    Stanbrough M; Magasanik B
    J Bacteriol; 1995 Jan; 177(1):94-102. PubMed ID: 7798155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2.
    Nielsen PS; van den Hazel B; Didion T; de Boer M; Jørgensen M; Planta RJ; Kielland-Brandt MC; Andersen HA
    Mol Gen Genet; 2001 Jan; 264(5):613-22. PubMed ID: 11212916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The level of DAL80 expression down-regulates GATA factor-mediated transcription in Saccharomyces cerevisiae.
    Cunningham TS; Rai R; Cooper TG
    J Bacteriol; 2000 Dec; 182(23):6584-91. PubMed ID: 11073899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae.
    Didion T; Grauslund M; Kielland-Brandt MC; Andersen HA
    J Bacteriol; 1996 Apr; 178(7):2025-9. PubMed ID: 8606179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae.
    Talibi D; Grenson M; André B
    Nucleic Acids Res; 1995 Feb; 23(4):550-7. PubMed ID: 7899074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene.
    Blinder D; Magasanik B
    J Bacteriol; 1995 Jul; 177(14):4190-3. PubMed ID: 7608102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors.
    Kuruvilla FG; Shamji AF; Schreiber SL
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7283-8. PubMed ID: 11416207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway.
    Chen X; Wang Z; Guo X; Liu S; He X
    J Biotechnol; 2017 Jan; 242():83-91. PubMed ID: 27908775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae.
    Coffman JA; Rai R; Cooper TG
    J Bacteriol; 1995 Dec; 177(23):6910-8. PubMed ID: 7592485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p.
    Garcia SC; Moretti MB; Batlle A
    FEMS Microbiol Lett; 2000 Mar; 184(2):219-24. PubMed ID: 10713424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.