These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 8636059)

  • 21. A family of ammonium transporters in Saccharomyces cerevisiae.
    Marini AM; Soussi-Boudekou S; Vissers S; Andre B
    Mol Cell Biol; 1997 Aug; 17(8):4282-93. PubMed ID: 9234685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integration of the multiple controls regulating the expression of the arginase gene CAR1 of Saccharomyces cerevisiae in response to differentnitrogen signals: role of Gln3p, ArgRp-Mcm1p, and Ume6p.
    Dubois E; Messenguy F
    Mol Gen Genet; 1997 Feb; 253(5):568-80. PubMed ID: 9065690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ammonia regulates VID30 expression and Vid30p function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia.
    van der Merwe GK; Cooper TG; van Vuuren HJ
    J Biol Chem; 2001 Aug; 276(31):28659-66. PubMed ID: 11356843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae.
    Kulkarni AA; Abul-Hamd AT; Rai R; El Berry H; Cooper TG
    J Biol Chem; 2001 Aug; 276(34):32136-44. PubMed ID: 11408486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae.
    Cunningham TS; Dorrington RA; Cooper TG
    J Bacteriol; 1994 Aug; 176(15):4718-25. PubMed ID: 8045902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. G1n3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae.
    Cunningham TS; Svetlov VV; Rai R; Smart W; Cooper TG
    J Bacteriol; 1996 Jun; 178(12):3470-9. PubMed ID: 8655543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae.
    Coffman JA; Rai R; Loprete DM; Cunningham T; Svetlov V; Cooper TG
    J Bacteriol; 1997 Jun; 179(11):3416-29. PubMed ID: 9171383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roles of the Dal82p domains in allophanate/oxalurate-dependent gene expression in Saccharomyces cerevisiae.
    Scott S; Abul-Hamd AT; Cooper TG
    J Biol Chem; 2000 Oct; 275(40):30886-93. PubMed ID: 10906145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic operation of the CAR2 (Ornithine transaminase) promoter elements in Saccharomyces cerevisiae.
    Park HD; Scott S; Rai R; Dorrington R; Cooper TG
    J Bacteriol; 1999 Nov; 181(22):7052-64. PubMed ID: 10559172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae.
    Soussi-Boudekou S; Vissers S; Urrestarazu A; Jauniaux JC; André B
    Mol Microbiol; 1997 Mar; 23(6):1157-68. PubMed ID: 9106207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AUA1, a gene involved in ammonia regulation of amino acid transport in Saccharomyces cerevisiae.
    Sophianopoulou V; Diallinas G
    Mol Microbiol; 1993 Apr; 8(1):167-78. PubMed ID: 8497191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of the GATA factors Gln3p, Nil1p, Dal80p and the Ure2p on ASP3 regulation in Saccharomyces cerevisiae.
    Oliveira EM; Martins AS; Carvajal E; Bon EP
    Yeast; 2003 Jan; 20(1):31-7. PubMed ID: 12489124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity of a C. elegans GATA transcription factor, ELT-1, expressed in yeast.
    Shim YH; Bonner JJ; Blumenthal T
    J Mol Biol; 1995 Nov; 253(5):665-76. PubMed ID: 7473742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae.
    De Boer M; Bebelman JP; Gonçalves PM; Maat J; Van Heerikhuizen H; Planta RJ
    Mol Microbiol; 1998 Nov; 30(3):603-13. PubMed ID: 9822825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae.
    Coffman JA; Cooper TG
    J Bacteriol; 1997 Sep; 179(17):5609-13. PubMed ID: 9287023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression.
    Jauniaux JC; Grenson M
    Eur J Biochem; 1990 May; 190(1):39-44. PubMed ID: 2194797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NCR-sensitive transport gene expression in S. cerevisiae is controlled by a branched regulatory pathway consisting of multiple NCR-responsive activator proteins.
    Coffman J; Rai R; Cunningham T; Svetlov V; Cooper TG
    Folia Microbiol (Praha); 1996; 41(1):85-6. PubMed ID: 9090830
    [No Abstract]   [Full Text] [Related]  

  • 38. Nitrogen regulation in Saccharomyces cerevisiae.
    Magasanik B; Kaiser CA
    Gene; 2002 May; 290(1-2):1-18. PubMed ID: 12062797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coregulation of the Kluyveromyces lactis lactose permease and beta-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter.
    Gödecke A; Zachariae W; Arvanitidis A; Breunig KD
    Nucleic Acids Res; 1991 Oct; 19(19):5351-8. PubMed ID: 1923819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combinatorial regulation of the Saccharomyces cerevisiae CAR1 (arginase) promoter in response to multiple environmental signals.
    Smart WC; Coffman JA; Cooper TG
    Mol Cell Biol; 1996 Oct; 16(10):5876-87. PubMed ID: 8816501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.