BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8636143)

  • 21. The structure of DNA in a nucleosome.
    Hayes JJ; Tullius TD; Wolffe AP
    Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7405-9. PubMed ID: 2170977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functionally relevant histone-DNA interactions extend beyond the classically defined nucleosome core region.
    Thiriet C; Hayes JJ
    J Biol Chem; 1998 Aug; 273(33):21352-8. PubMed ID: 9694896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atomic force microscopy sees nucleosome positioning and histone H1-induced compaction in reconstituted chromatin.
    Sato MH; Ura K; Hohmura KI; Tokumasu F; Yoshimura SH; Hanaoka F; Takeyasu K
    FEBS Lett; 1999 Jun; 452(3):267-71. PubMed ID: 10386604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contacts of the globular domain of histone H5 and core histones with DNA in a "chromatosome".
    Hayes JJ; Pruss D; Wolffe AP
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7817-21. PubMed ID: 8052665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA damage induced by bleomycin, neocarzinostatin, and melphalan in a precisely positioned nucleosome. Asymmetry in protection at the periphery of nucleosome-bound DNA.
    Smith BL; Bauer GB; Povirk LF
    J Biol Chem; 1994 Dec; 269(48):30587-94. PubMed ID: 7527033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The core histone N-terminal tail domains negatively regulate binding of transcription factor IIIA to a nucleosome containing a 5S RNA gene via a novel mechanism.
    Yang Z; Zheng C; Thiriet C; Hayes JJ
    Mol Cell Biol; 2005 Jan; 25(1):241-9. PubMed ID: 15601846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of drug binding to DNA by hydroxyl radical footprinting. Relationship of distamycin binding sites to DNA structure and positioned nucleosomes on 5S RNA genes of Xenopus.
    Churchill ME; Hayes JJ; Tullius TD
    Biochemistry; 1990 Jun; 29(25):6043-50. PubMed ID: 1696501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression.
    Ura K; Nightingale K; Wolffe AP
    EMBO J; 1996 Sep; 15(18):4959-69. PubMed ID: 8890169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linker histone protection of chromatosomes reconstituted on 5S rDNA from Xenopus borealis:a reinvestigation.
    An W; van Holde K; Zlatanova J
    Nucleic Acids Res; 1998 Sep; 26(17):4042-6. PubMed ID: 9705517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural features of transcription factor IIIA bound to a nucleosome in solution.
    Vitolo JM; Yang Z; Basavappa R; Hayes JJ
    Mol Cell Biol; 2004 Jan; 24(2):697-707. PubMed ID: 14701742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones.
    Ura K; Hayes JJ; Wolffe AP
    EMBO J; 1995 Aug; 14(15):3752-65. PubMed ID: 7641694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals.
    Flaus A; Luger K; Tan S; Richmond TJ
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1370-5. PubMed ID: 8643638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The amino-terminal tails of the core histones and the translational position of the TATA box determine TBP/TFIIA association with nucleosomal DNA.
    Godde JS; Nakatani Y; Wolffe AP
    Nucleic Acids Res; 1995 Nov; 23(22):4557-64. PubMed ID: 8524642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The core histone tail domains contribute to sequence-dependent nucleosome positioning.
    Yang Z; Zheng C; Hayes JJ
    J Biol Chem; 2007 Mar; 282(11):7930-8. PubMed ID: 17234628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.
    Cole HA; Cui F; Ocampo J; Burke TL; Nikitina T; Nagarajavel V; Kotomura N; Zhurkin VB; Clark DJ
    Nucleic Acids Res; 2016 Jan; 44(2):573-81. PubMed ID: 26400169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calicheamin-mediated DNA damage in a reconstituted nucleosome is not affected by histone acetylation: the role of drug structure in the target recognition process.
    Liang Q; Choi DJ; Dedon PC
    Biochemistry; 1997 Oct; 36(42):12653-9. PubMed ID: 9376372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of histone H1 in chromatin condensation and transcriptional repression.
    Buttinelli M; Panetta G; Rhodes D; Travers A
    Genetica; 1999; 106(1-2):117-24. PubMed ID: 10710717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of 5S RNA transcription in vitro by nucleosome cores with low or high levels of histone acetylation.
    Roberge M; O'Neill TE; Bradbury EM
    FEBS Lett; 1991 Aug; 288(1-2):215-8. PubMed ID: 1879554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A positive role for histone acetylation in transcription factor access to nucleosomal DNA.
    Lee DY; Hayes JJ; Pruss D; Wolffe AP
    Cell; 1993 Jan; 72(1):73-84. PubMed ID: 8422685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.