These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8636197)

  • 1. The vascular supply to bone in distraction osteoneogenesis: an experimental study.
    Mosheiff R; Cordey J; Rahn BA; Perren SM; Stein H
    J Bone Joint Surg Br; 1996 May; 78(3):497-8. PubMed ID: 8636197
    [No Abstract]   [Full Text] [Related]  

  • 2. Local application of VEGF compensates callus deficiency after acute soft tissue trauma--results using a limb-shortening distraction procedure in rabbit tibia.
    Ochman S; Frey S; Raschke MJ; Deventer JN; Meffert RH
    J Orthop Res; 2011 Jul; 29(7):1093-8. PubMed ID: 21284032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are bone turnover markers capable of predicting callus consolidation during bone healing?
    Klein P; Bail HJ; Schell H; Michel R; Amthauer H; Bragulla H; Duda GN
    Calcif Tissue Int; 2004 Jul; 75(1):40-9. PubMed ID: 15148561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential regulation of blood vessel formation between standard and delayed bone healing.
    Lienau J; Schmidt-Bleek K; Peters A; Haschke F; Duda GN; Perka C; Bail HJ; Schütze N; Jakob F; Schell H
    J Orthop Res; 2009 Sep; 27(9):1133-40. PubMed ID: 19274756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Mechanical Characterization of the Distraction Callus During Bone Consolidation.
    Mora-Macías J; Reina-Romo E; López-Pliego M; Giráldez-Sánchez MA; Domínguez J
    Ann Biomed Eng; 2015 Nov; 43(11):2663-74. PubMed ID: 25956927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensimetric monitoring of healing in the treatment with the Ilizarov apparatus. A multicenter clinical trial.
    Ceffa R; Bombelli M; Boero S; Marrè Brunenghi G; Mora R; Belluatti A; Piovani L; Iacobellis C; Susanna M; Guerreschi F; Perissinotto A
    Bull Hosp Jt Dis; 1997; 56(1):41-5. PubMed ID: 9063602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The osteogenic potential of free periosteal autografts in tibial fractures with severe soft tissue damage: an experimental study.
    Reynders P; Becker J; Broos P
    Acta Orthop Belg; 1998 Jun; 64(2):184-92. PubMed ID: 9689760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biologic model of bone transport distraction osteogenesis and vascular response.
    DeCoster TA; Simpson AH; Wood M; Li G; Kenwright J
    J Orthop Res; 1999 Mar; 17(2):238-45. PubMed ID: 10221841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in blood flow during tibial thickening by the Ilizarov method.
    Shevtsov VI; Gordievskikh NI; Bunov VS; Petrovskaya NV
    Bull Exp Biol Med; 2002 Dec; 134(6):525-7. PubMed ID: 12660827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep.
    Epari DR; Lienau J; Schell H; Witt F; Duda GN
    Bone; 2008 Oct; 43(4):734-9. PubMed ID: 18634913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fracture healing after reamed and unreamed intramedullary nailing in sheep tibia.
    Högel F; Schlegel U; Südkamp N; Müller C
    Injury; 2011 Jul; 42(7):667-74. PubMed ID: 21074768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new role for the chondrocyte in fracture repair: endochondral ossification includes direct bone formation by former chondrocytes.
    Scammell BE; Roach HI
    J Bone Miner Res; 1996 Jun; 11(6):737-45. PubMed ID: 8725170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for intramembranous ossification during fracture healing.
    Thompson Z; Miclau T; Hu D; Helms JA
    J Orthop Res; 2002 Sep; 20(5):1091-8. PubMed ID: 12382977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of vascularity on canine distracted tibial callus consolidation.
    Ohashi S; Ohnishi I; Kageyama T; Fukuda S; Tsuchiya A; Imai K; Matsuyama J; Nakamura K
    Clin Orthop Relat Res; 2005 Sep; 438():253-9. PubMed ID: 16131899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Repair osteogenesis during limb elongation using transosseous distraction osteosynthesis].
    Ir'ianov IuM; Ir'ianova TIu
    Morfologiia; 2003; 123(3):83-6. PubMed ID: 12942834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic regulation of angiogenesis and matrix degradation in bone regeneration--distraction osteogenesis compared to rigid fracture healing.
    Weiss S; Zimmermann G; Baumgart R; Kasten P; Bidlingmaier M; Henle P
    Bone; 2005 Dec; 37(6):781-90. PubMed ID: 16202678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific CGRP innervation coincides with bone formation during fracture healing and modeling: A study in rat angulated tibia.
    Li J; Kreicbergs A; Bergström J; Stark A; Ahmed M
    J Orthop Res; 2007 Sep; 25(9):1204-12. PubMed ID: 17503519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Osteogenesis and angiogenesis in distraction osteosynthesis].
    Shevtsov VI; Ir'ianov IuM
    Biull Eksp Biol Med; 1995 Jul; 120(7):95-8. PubMed ID: 8527795
    [No Abstract]   [Full Text] [Related]  

  • 19. Mice expressing a constitutively active PTH/PTHrP receptor in osteoblasts show reduced callus size but normal callus morphology during fracture healing.
    Marsell R; Jonsson KB; Cho TJ; Einhorn TA; Ohlsson C; Schipani E
    Acta Orthop; 2007 Feb; 78(1):39-45. PubMed ID: 17453391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria.
    Holstein JH; Becker SC; Fiedler M; Garcia P; Histing T; Klein M; Laschke MW; Corsten M; Pohlemann T; Menger MD
    Injury; 2011 Aug; 42(8):765-71. PubMed ID: 21156316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.