These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 8636207)

  • 1. Biochemical requirements for the targeting and fusion of ER-derived transport vesicles with purified yeast Golgi membranes.
    Lupashin VV; Hamamoto S; Schekman RW
    J Cell Biol; 1996 Feb; 132(3):277-89. PubMed ID: 8636207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles.
    Rexach MF; Schekman RW
    J Cell Biol; 1991 Jul; 114(2):219-29. PubMed ID: 1649197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled ER to Golgi transport reconstituted with purified cytosolic proteins.
    Barlowe C
    J Cell Biol; 1997 Dec; 139(5):1097-108. PubMed ID: 9382859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes.
    Cao X; Barlowe C
    J Cell Biol; 2000 Apr; 149(1):55-66. PubMed ID: 10747087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of endoplasmic reticulum-derived vesicles in the formation of Golgi elements in sec23 and sec18 Saccharomyces Cerevisiae mutants.
    Morin-Ganet MN; Rambourg A; Clermont Y; Képès F
    Anat Rec; 1998 Jun; 251(2):256-64. PubMed ID: 9624457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. COPII and secretory cargo capture into transport vesicles.
    Kuehn MJ; Schekman R
    Curr Opin Cell Biol; 1997 Aug; 9(4):477-83. PubMed ID: 9261052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins.
    Cao X; Ballew N; Barlowe C
    EMBO J; 1998 Apr; 17(8):2156-65. PubMed ID: 9545229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of transport from the ER to the Golgi complex in yeast using microsomes and permeabilized yeast cells.
    Ruohola H; Kabcenell AK; Ferro-Novick S
    Methods Cell Biol; 1989; 31():143-54. PubMed ID: 2674624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of endoplasmic reticulum-derived transport vesicles.
    Rexach MF; Latterich M; Schekman RW
    J Cell Biol; 1994 Sep; 126(5):1133-48. PubMed ID: 8063853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immuno-isolation of Sec7p-coated transport vesicles from the yeast secretory pathway.
    Franzusoff A; Lauzé E; Howell KE
    Nature; 1992 Jan; 355(6356):173-5. PubMed ID: 1729652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tip20p prohibits back-fusion of COPII vesicles with the endoplasmic reticulum.
    Kamena F; Spang A
    Science; 2004 Apr; 304(5668):286-9. PubMed ID: 15073376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p.
    VanRheenen SM; Cao X; Sapperstein SK; Chiang EC; Lupashin VV; Barlowe C; Waters MG
    J Cell Biol; 1999 Nov; 147(4):729-42. PubMed ID: 10562277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of a functional vesicular intermediate that mediates ER to Golgi transport in yeast.
    Groesch ME; Ruohola H; Bacon R; Rossi G; Ferro-Novick S
    J Cell Biol; 1990 Jul; 111(1):45-53. PubMed ID: 2195039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An N-end rule destabilization mutant reveals pre-Golgi requirements for Sec7p in yeast membrane traffic.
    Wolf J; Nicks M; Deitz S; van Tuinen E; Franzusoff A
    Biochem Biophys Res Commun; 1998 Feb; 243(1):191-8. PubMed ID: 9473503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion.
    Sacher M; Jiang Y; Barrowman J; Scarpa A; Burston J; Zhang L; Schieltz D; Yates JR; Abeliovich H; Ferro-Novick S
    EMBO J; 1998 May; 17(9):2494-503. PubMed ID: 9564032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Svp26 facilitates ER exit of mannosyltransferases Mnt2 and Mnt3 in Saccharomyces cerevisiae.
    Tanabe Y; Arai S; Wada I; Adachi H; Kamakura T; Yoda K; Noda Y
    J Gen Appl Microbiol; 2019 Sep; 65(4):180-187. PubMed ID: 30700649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultracytochemical evidence of Golgi functions in microvesicles at all phases of cell cycle in Saccharomyces cerevisiae.
    Vorísek J
    Micron; 1995; 26(2):175-90. PubMed ID: 7767635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack.
    Malhotra V; Serafini T; Orci L; Shepherd JC; Rothman JE
    Cell; 1989 Jul; 58(2):329-36. PubMed ID: 2752426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of a vesicular intermediate in the cell-free transfer of membrane from transitional elements of the endoplasmic reticulum to Golgi apparatus cisternae of rat liver.
    Paulik M; Nowack DD; Morré DJ
    J Biol Chem; 1988 Nov; 263(33):17738-48. PubMed ID: 3182869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast.
    Shim J; Newman AP; Ferro-Novick S
    J Cell Biol; 1991 Apr; 113(1):55-64. PubMed ID: 2007627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.