These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8636255)

  • 1. Increased levels of methylglyoxal-metabolizing enzymes in mononuclear and polymorphonuclear cells from insulin-dependent diabetic patients with diabetic complications: aldose reductase, glyoxalase I, and glyoxalase II--a clinical research center study.
    Ratliff DM; Vander Jagt DJ; Eaton RP; Vander Jagt DL
    J Clin Endocrinol Metab; 1996 Feb; 81(2):488-92. PubMed ID: 8636255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human red blood cell glyoxalase system in diabetes mellitus.
    Thornalley PJ; Hooper NI; Jennings PE; Florkowski CM; Jones AF; Lunec J; Barnett AH
    Diabetes Res Clin Pract; 1989 Aug; 7(2):115-20. PubMed ID: 2776650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications.
    Vander Jagt DL; Hassebrook RK; Hunsaker LA; Brown WM; Royer RE
    Chem Biol Interact; 2001 Jan; 130-132(1-3):549-62. PubMed ID: 11306074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tumor promoting phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA) increases glyoxalase I and decreases glyoxalase II activity in human polymorphonuclear leukocytes.
    Gillespie E
    Biochem Biophys Res Commun; 1981 Jan; 98(2):463-70. PubMed ID: 7225106
    [No Abstract]   [Full Text] [Related]  

  • 5. Modification of the glyoxalase system in streptozotocin-induced diabetic rats. Effect of the aldose reductase inhibitor Statil.
    Phillips SA; Mirrlees D; Thornalley PJ
    Biochem Pharmacol; 1993 Sep; 46(5):805-11. PubMed ID: 8373434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications.
    McLellan AC; Thornalley PJ; Benn J; Sonksen PH
    Clin Sci (Lond); 1994 Jul; 87(1):21-9. PubMed ID: 8062515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No correlation between glycemic control and an increase in erythrocyte aldose reductase activity in type I and type II diabetic patients.
    Hamada Y; Hammon K; Raskin P
    J Diabetes Complications; 1992; 6(2):111-5. PubMed ID: 1611134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Platelet glyoxalases in thrombocytosis.
    Leoncini G; Maresca M; Balestrero F; Armani U; Piana A
    Scand J Haematol; 1984 Jul; 33(1):91-4. PubMed ID: 6463589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of the glyoxalase system during the functional activation of human neutrophils.
    Thornalley PJ; Bellavite P
    Biochim Biophys Acta; 1987 Nov; 931(2):120-9. PubMed ID: 3663711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylglyoxal metabolism and diabetic complications: roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase.
    Vander Jagt DL; Hunsaker LA
    Chem Biol Interact; 2003 Feb; 143-144():341-51. PubMed ID: 12604221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutrophil aldose reductase activity and its association with established diabetic microvascular complications.
    Dent MT; Tebbs SE; Gonzalez AM; Ward JD; Wilson RM
    Diabet Med; 1991 Jun; 8(5):439-42. PubMed ID: 1830528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutrophil aldose reductase activity as a potential marker for neuropathy and cataract in diabetes.
    Dent MT; Veves A; Tebbs SE; Gonzalez AM; Malik RA; Boulton AJ; Ward JD; Wilson RM
    Diabet Med; 1991 Dec; 8(10):911-6. PubMed ID: 1838041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of Glyoxalase 1 Induces Compensatory Mechanism to Achieve Dicarbonyl Detoxification in Mammalian Schwann Cells.
    Morgenstern J; Fleming T; Schumacher D; Eckstein V; Freichel M; Herzig S; Nawroth P
    J Biol Chem; 2017 Feb; 292(8):3224-3238. PubMed ID: 27956549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of efficiency in the glyoxalase pathway.
    Creighton DJ; Migliorini M; Pourmotabbed T; Guha MK
    Biochemistry; 1988 Sep; 27(19):7376-84. PubMed ID: 3207683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of erythrocyte aldose reductase activity with diabetic complications in type 1 diabetes mellitus.
    Hamada Y; Kitoh R; Raskin P
    Diabet Med; 1993; 10(1):33-8. PubMed ID: 8435985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Participation of glyoxalases and methylglyoxal in diabetic complication development].
    Piskorska D; Kopieczna-Grzebieniak E
    Pol Merkur Lekarski; 1998 Jun; 4(24):342-4. PubMed ID: 9771022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of the glyoxalase system in clinical diabetes mellitus.
    McLellan AC; Thornalley PJ; Benn J; Sonksen PH
    Biochem Soc Trans; 1993 May; 21(2):158S. PubMed ID: 8359411
    [No Abstract]   [Full Text] [Related]  

  • 18. Oxidative stress indices in IDDM subjects with and without long-term diabetic complications.
    VanderJagt DJ; Harrison JM; Ratliff DM; Hunsaker LA; Vander Jagt DL
    Clin Biochem; 2001 Jun; 34(4):265-70. PubMed ID: 11440725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyol pathway and NADPH-dependent reductases in dog leukocytes.
    Fukase S; Sato S; Mori K; Secchi EF; Kador PF
    J Diabetes Complications; 1996; 10(6):304-13. PubMed ID: 8972381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of the human erythrocyte glyoxalase system using 1H NMR and a computer model.
    Rae C; Berners-Price SJ; Bulliman BT; Kuchel PW
    Eur J Biochem; 1990 Oct; 193(1):83-90. PubMed ID: 2226450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.