BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 86363)

  • 1. Sodium binding sites of gramicidin A: sodium-23 nuclear magnetic resonance study.
    Cornélis A; Laszlo P
    Biochemistry; 1979 May; 18(10):2004-7. PubMed ID: 86363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear magnetic resonance of 23Na ions interacting with the gramicidin channel.
    Monoi H
    Biophys J; 1985 Oct; 48(4):643-62. PubMed ID: 2413919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium binding constants for the group I metal cations with gramicidin-A determined by competition studies and T1+-205 nuclear magnetic resonance spectroscopy.
    Hinton JF; Whaley WL; Shungu D; Koeppe RE; Millett FS
    Biophys J; 1986 Sep; 50(3):539-44. PubMed ID: 2428415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The malonyl gramicidin channel: NMR-derived rate constants and comparison of calculated and experimental single-channel currents.
    Urry DW; Venkatachalam CM; Spisni A; Bradley RJ; Trapane TL; Prasad KU
    J Membr Biol; 1980 Jun; 55(1):29-51. PubMed ID: 6157028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium binding constants for Tl+ with gramicidins A, B and C in a lysophosphatidylcholine environment determined by 205Tl nuclear magnetic resonance spectroscopy.
    Hinton JF; Koeppe RE; Shungu D; Whaley WL; Paczkowski JA; Millett FS
    Biophys J; 1986 Feb; 49(2):571-7. PubMed ID: 2420383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of alkaline cations to the double-helical form of gramicidin.
    Chen Y; Wallace BA
    Biophys J; 1996 Jul; 71(1):163-70. PubMed ID: 8804600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H, and effects of anion binding.
    Eisenman G; Sandblom J; Neher E
    Biophys J; 1978 May; 22(2):307-40. PubMed ID: 77689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium ion binding in the gramicidin A channel. Solid-state NMR studies of the tryptophan residues.
    Separovic F; Gehrmann J; Milne T; Cornell BA; Lin SY; Smith R
    Biophys J; 1994 Oct; 67(4):1495-500. PubMed ID: 7529584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate theory calculation of gramicidin single-channel currents using NMR-derived rate constants.
    Urry DW; Venkatachalam CM; Spisni A; Läuger P; Khaled MA
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2028-32. PubMed ID: 6154942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy.
    Koeppe RE; Killian JA; Greathouse DV
    Biophys J; 1994 Jan; 66(1):14-24. PubMed ID: 7510525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monovalent cation transport: lack of structural deformation upon cation binding.
    Tian F; Lee KC; Hu W; Cross TA
    Biochemistry; 1996 Sep; 35(37):11959-66. PubMed ID: 8810900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thallium-205 nuclear magnetic resonance study of the thallium(I)-gramicidin A association in trifluoroethanol.
    Turner GL; Hinton JF; Millett FS
    Biochemistry; 1982 Feb; 21(4):646-51. PubMed ID: 6176261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+ interacting with gramicidin D. A nuclear magnetic resonance study.
    Monoi H; Uedaira H
    Biophys J; 1979 Mar; 25(3):535-40. PubMed ID: 95566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Location of monovalent cation binding sites in the gramicidin channel.
    Urry DW; Prasad KU; Trapane TL
    Proc Natl Acad Sci U S A; 1982 Jan; 79(2):390-4. PubMed ID: 6176992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The divalent cation-binding sites of gramicidin A transmembrane ion-channel.
    Golovanov AP; Barsukov IL; Arseniev AS; Bystrov VF; Sukhanov SV; Barsukov LI
    Biopolymers; 1991 Mar; 31(4):425-34. PubMed ID: 1713797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binding site of sodium in the gramicidin A channel: comparison of molecular dynamics with solid-state NMR data.
    Woolf TB; Roux B
    Biophys J; 1997 May; 72(5):1930-45. PubMed ID: 9129798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding constants of Li+, K+, and Tl+ in the gramicidin channel determined from water permeability measurements.
    Dani JA; Levitt DG
    Biophys J; 1981 Aug; 35(2):485-99. PubMed ID: 6168310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of interproton nuclear Overhauser effects in gramicidin-S dissolved in deuterated ethylene glycol.
    Bothner-By AA; Johner PE
    Biophys J; 1978 Dec; 24(3):779-90. PubMed ID: 83885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TI-205 nuclear magnetic resonance determination of the thermodynamic parameters for the binding of monovalent cations to gramicidins A and C.
    Hinton JF; Fernandez JQ; Shungu DC; Whaley WL; Koeppe RE; Millett FS
    Biophys J; 1988 Sep; 54(3):527-33. PubMed ID: 2462930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.