BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 8636469)

  • 1. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord.
    Berki AC; O'Donovan MJ; Antal M
    J Comp Neurol; 1995 Nov; 362(4):583-96. PubMed ID: 8636469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental changes in the distribution of gamma-aminobutyric acid-immunoreactive neurons in the embryonic chick lumbosacral spinal cord.
    Antal M; Berki AC; Horváth L; O'Donovan MJ
    J Comp Neurol; 1994 May; 343(2):228-36. PubMed ID: 8027440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of specific populations of interneurons in the ventral horn of the embryonic chick lumbosacral spinal cord.
    Antal M; Polgár E; Berki A; Birinyi A; Puskár Z
    Eur J Morphol; 1994 Aug; 32(2-4):201-6. PubMed ID: 7803167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient expression of GABA immunoreactivity in the developing rat spinal cord.
    Ma W; Behar T; Barker JL
    J Comp Neurol; 1992 Nov; 325(2):271-90. PubMed ID: 1460116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the glycinergic system during the course of embryonic development in the mouse spinal cord and its co-localization with GABA immunoreactivity.
    Allain AE; Baïri A; Meyrand P; Branchereau P
    J Comp Neurol; 2006 Jun; 496(6):832-46. PubMed ID: 16628621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABA- and glycine-immunoreactive neurons in the spinal cord of the carp, Cyprinus carpio.
    Uematsu K; Shirasaki M; Storm-Mathisen J
    J Comp Neurol; 1993 Jun; 332(1):59-68. PubMed ID: 8514921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord.
    Antal M; Polgár E; Chalmers J; Minson JB; Llewellyn-Smith I; Heizmann CW; Somogyi P
    J Comp Neurol; 1991 Dec; 314(1):114-24. PubMed ID: 1797867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogenic changes of the GABAergic system in the embryonic mouse spinal cord.
    Allain AE; Baïri A; Meyrand P; Branchereau P
    Brain Res; 2004 Mar; 1000(1-2):134-47. PubMed ID: 15053961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventrally located commissural neurons express the GABAergic phenotype in developing rat spinal cord.
    Phelps PE; Alijani A; Tran TS
    J Comp Neurol; 1999 Jun; 409(2):285-98. PubMed ID: 10379921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of calbindin-D28k immunoreactive neurons in the embryonic chick lumbosacral spinal cord.
    Antal M; Polgár E
    Eur J Neurosci; 1993 Jul; 5(7):782-94. PubMed ID: 8281290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development, neurochemical properties, and axonal projections of a population of last-order premotor interneurons in the white matter of the chick lumbosacral spinal cord.
    Antal M; Puskár Z; Birinyi A; Storm-Mathisen J
    J Exp Zool; 2000 Feb; 286(2):157-72. PubMed ID: 10617858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of spinal motor networks in the chick embryo.
    O'Donovan M; Sernagor E; Sholomenko G; Ho S; Antal M; Yee W
    J Exp Zool; 1992 Mar; 261(3):261-73. PubMed ID: 1629659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord.
    Inquimbert P; Rodeau JL; Schlichter R
    Eur J Neurosci; 2007 Nov; 26(10):2940-9. PubMed ID: 18001289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat.
    Todd AJ; Sullivan AC
    J Comp Neurol; 1990 Jun; 296(3):496-505. PubMed ID: 2358549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of glycine receptor immunoreactivity in the spinal cord of the rat: cytochemical evidence for a differential glycinergic control of lamina I and V nociceptive neurons.
    Basbaum AI
    J Comp Neurol; 1988 Dec; 278(3):330-6. PubMed ID: 2851018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAergic and glycinergic interneuron expression during spinal cord development: dynamic interplay between inhibition and excitation in the control of ventral network outputs.
    Sibilla S; Ballerini L
    Prog Neurobiol; 2009 Sep; 89(1):46-60. PubMed ID: 19539686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory neurones of a motor pattern generator in Xenopus revealed by antibodies to glycine.
    Dale N; Ottersen OP; Roberts A; Storm-Mathisen J
    Nature; 1986 Nov 20-26; 324(6094):255-7. PubMed ID: 3785396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunocytochemical study of somatostatin, neurotensin, GABA, and glycine in rat spinal dorsal horn.
    Proudlock F; Spike RC; Todd AJ
    J Comp Neurol; 1993 Jan; 327(2):289-97. PubMed ID: 7678841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of GABA, glycine, and glutamate immunoreactivities in the vestibular nuclear complex of the frog.
    Reichenberger I; Straka H; Ottersen OP; Streit P; Gerrits NM; Dieringer N
    J Comp Neurol; 1997 Jan; 377(2):149-64. PubMed ID: 8986878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunocytochemical localization of amino acid neurotransmitter candidates in the ventral horn of the cat spinal cord: a light microscopic study.
    Shupliakov O; Ornung G; Brodin L; Ulfhake B; Ottersen OP; Storm-Mathisen J; Cullheim S
    Exp Brain Res; 1993; 96(3):404-18. PubMed ID: 7905422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.