BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8636995)

  • 1. Mapping in three dimensions of regions in a catalytic RNA protected from attack by an Fe(II)-EDTA reagent.
    Westhof E; Wesolowski D; Altman S
    J Mol Biol; 1996 May; 258(4):600-13. PubMed ID: 8636995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe.
    Biswas R; Ledman DW; Fox RO; Altman S; Gopalan V
    J Mol Biol; 2000 Feb; 296(1):19-31. PubMed ID: 10656815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using electron paramagnetic resonance spectroscopy.
    Gopalan V; Kühne H; Biswas R; Li H; Brudvig GW; Altman S
    Biochemistry; 1999 Feb; 38(6):1705-14. PubMed ID: 10026248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential contact sites between the protein and RNA subunit in the Bacillus subtilis RNase P holoenzyme.
    Rox C; Feltens R; Pfeiffer T; Hartmann RK
    J Mol Biol; 2002 Jan; 315(4):551-60. PubMed ID: 11812129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the functional role of conserved residues in the protein subunit of ribonuclease P from Escherichia coli.
    Gopalan V; Baxevanis AD; Landsman D; Altman S
    J Mol Biol; 1997 Apr; 267(4):818-29. PubMed ID: 9135114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational analysis of the joining regions flanking helix P18 in E. coli RNase P RNA.
    Hardt WD; Hartmann RK
    J Mol Biol; 1996 Jun; 259(3):422-33. PubMed ID: 8676378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the regions of RNase P catalytic RNA that are potentially in close contact with its protein cofactor.
    Trang P; Liu F
    Methods Mol Biol; 2008; 488():267-77. PubMed ID: 18982298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein cofactor-dependent acquisition of novel catalytic activity by the RNase P ribonucleoprotein of E. coli.
    Cole KB; Dorit RL
    J Mol Biol; 2001 Apr; 307(5):1181-212. PubMed ID: 11292334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition of novel catalytic activity by the M1 RNA ribozyme: the cost of molecular adaptation.
    Cole KB; Dorit RL
    J Mol Biol; 1999 Oct; 292(4):931-44. PubMed ID: 10525416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lead(II) cleavage analysis of RNase P RNA in vivo.
    Lindell M; Brännvall M; Wagner EG; Kirsebom LA
    RNA; 2005 Sep; 11(9):1348-54. PubMed ID: 16043496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway of activation by magnesium ions of substrates for the catalytic subunit of RNase P from Escherichia coli.
    Perreault JP; Altman S
    J Mol Biol; 1993 Apr; 230(3):750-6. PubMed ID: 7683057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the interaction of Escherichia coli RNase P RNA with tRNAs containing a short or a long extra arm.
    Gaur RK; Hanne A; Conrad F; Kahle D; Krupp G
    RNA; 1996 Jul; 2(7):674-81. PubMed ID: 8756410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain structure of the ribozyme from eubacterial ribonuclease P.
    Loria A; Pan T
    RNA; 1996 Jun; 2(6):551-63. PubMed ID: 8718684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional working model of M1 RNA, the catalytic RNA subunit of ribonuclease P from Escherichia coli.
    Westhof E; Altman S
    Proc Natl Acad Sci U S A; 1994 May; 91(11):5133-7. PubMed ID: 7515186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The protein cofactor allows the sequence of an RNase P ribozyme to diversify by maintaining the catalytically active structure of the enzyme.
    Kim JJ; Kilani AF; Zhan X; Altman S; Liu F
    RNA; 1997 Jun; 3(6):613-23. PubMed ID: 9174096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of C5 protein on Escherichia coli RNase P catalysis with a precursor tRNA(Phe) bearing a single mismatch in the acceptor stem.
    Park BH; Lee JH; Kim M; Lee Y
    Biochem Biophys Res Commun; 2000 Feb; 268(1):136-40. PubMed ID: 10652227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme.
    Loria A; Niranjanakumari S; Fierke CA; Pan T
    Biochemistry; 1998 Nov; 37(44):15466-73. PubMed ID: 9799509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling of the three-dimensional structure of the bacterial RNase P holoenzyme.
    Tsai HY; Masquida B; Biswas R; Westhof E; Gopalan V
    J Mol Biol; 2003 Jan; 325(4):661-75. PubMed ID: 12507471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic comparative mutational analysis of the base-pairing between RNase P RNA and its substrate.
    Svärd SG; Kagardt U; Kirsebom LA
    RNA; 1996 May; 2(5):463-72. PubMed ID: 8665413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of terminal deletions in C5 protein on promoting RNase P catalysis.
    Kim M; Hyun Park B; Lee Y
    Biochem Biophys Res Commun; 2000 Feb; 268(1):118-23. PubMed ID: 10652223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.