These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 8637001)
1. Structural studies of synthetic peptides dissected from the voltage-gated sodium channel. Doak DG; Mulvey D; Kawaguchi K; Villalain J; Campbell ID J Mol Biol; 1996 May; 258(4):672-87. PubMed ID: 8637001 [TBL] [Abstract][Full Text] [Related]
2. Solution structure of the cytoplasmic linker between domain III-S6 and domain IV-S1 (III-IV linker) of the rat brain sodium channel in SDS micelles. Miyamoto K; Nakagawa T; Kuroda Y Biopolymers; 2001 Oct; 59(5):380-93. PubMed ID: 11514941 [TBL] [Abstract][Full Text] [Related]
3. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain. Ruan KH; Li D; Ji J; Lin YZ; Gao X Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571 [TBL] [Abstract][Full Text] [Related]
4. 1H-NMR and circular dichroism spectroscopic studies on changes in secondary structures of the sodium channel inactivation gate peptides as caused by the pentapeptide KIFMK. Kuroda Y; Maeda Y; Miyamoto K; Tanaka K; Kanaori K; Otaka A; Fujii N; Nakagawa T Biophys J; 1999 Sep; 77(3):1363-73. PubMed ID: 10465748 [TBL] [Abstract][Full Text] [Related]
5. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein. Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707 [TBL] [Abstract][Full Text] [Related]
6. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6. Wigley WC; Vijayakumar S; Jones JD; Slaughter C; Thomas PJ Biochemistry; 1998 Jan; 37(3):844-53. PubMed ID: 9454574 [TBL] [Abstract][Full Text] [Related]
7. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Catterall WA Adv Neurol; 1999; 79():441-56. PubMed ID: 10514834 [TBL] [Abstract][Full Text] [Related]
8. NMR studies of the low-density lipoprotein receptor-binding peptide of apolipoprotein E bound to dodecylphosphocholine micelles. Clayton D; Brereton IM; Kroon PA; Smith R Protein Sci; 1999 Sep; 8(9):1797-805. PubMed ID: 10493581 [TBL] [Abstract][Full Text] [Related]
9. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor. Lazarova T; Brewin KA; Stoeber K; Robinson CR Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanisms of gating and drug block of sodium channels. Catterall WA Novartis Found Symp; 2002; 241():206-18; discussion 218-32. PubMed ID: 11771647 [TBL] [Abstract][Full Text] [Related]
11. The alignment of a voltage-sensing peptide in dodecylphosphocholine micelles and in oriented lipid bilayers by nuclear magnetic resonance and molecular modeling. Mattila K; Kinder R; Bechinger B Biophys J; 1999 Oct; 77(4):2102-13. PubMed ID: 10512830 [TBL] [Abstract][Full Text] [Related]
12. The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy. Wang G; Sparrow JT; Cushley RJ Biochemistry; 1997 Nov; 36(44):13657-66. PubMed ID: 9354635 [TBL] [Abstract][Full Text] [Related]
13. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
14. Structure and mechanism of action of the antimicrobial peptide piscidin. Campagna S; Saint N; Molle G; Aumelas A Biochemistry; 2007 Feb; 46(7):1771-8. PubMed ID: 17253775 [TBL] [Abstract][Full Text] [Related]
15. Structure of the membrane binding domain of CTP:phosphocholine cytidylyltransferase. Dunne SJ; Cornell RB; Johnson JE; Glover NR; Tracey AS Biochemistry; 1996 Sep; 35(37):11975-84. PubMed ID: 8810902 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional structure of neuropeptide k bound to dodecylphosphocholine micelles. Dike A; Cowsik SM Biochemistry; 2006 Mar; 45(9):2994-3004. PubMed ID: 16503654 [TBL] [Abstract][Full Text] [Related]
17. Micellar environments induce structuring of the N-terminal tail of the prion protein. Renner C; Fiori S; Fiorino F; Landgraf D; Deluca D; Mentler M; Grantner K; Parak FG; Kretzschmar H; Moroder L Biopolymers; 2004 Mar; 73(4):421-33. PubMed ID: 14991659 [TBL] [Abstract][Full Text] [Related]
18. Coassembly of synthetic segments of shaker K+ channel within phospholipid membranes. Peled-Zehavi H; Arkin IT; Engelman DM; Shai Y Biochemistry; 1996 May; 35(21):6828-38. PubMed ID: 8639634 [TBL] [Abstract][Full Text] [Related]
19. Structural characterization of the transmembrane segments of the mitochondrial oxoglutarate carrier (OGC) by NMR spectroscopy. Castiglione Morelli MA; Ostuni A; Armentano F; Palmieri F; Bisaccia F Ital J Biochem; 2007 Dec; 56(4):285-8. PubMed ID: 19192628 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Fregeau Gallagher NL; Sailer M; Niemczura WP; Nakashima TT; Stiles ME; Vederas JC Biochemistry; 1997 Dec; 36(49):15062-72. PubMed ID: 9398233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]