These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 8637002)
1. Amino acid sequence determinants of beta-lactamase structure and activity. Huang W; Petrosino J; Hirsch M; Shenkin PS; Palzkill T J Mol Biol; 1996 May; 258(4):688-703. PubMed ID: 8637002 [TBL] [Abstract][Full Text] [Related]
2. Probing beta-lactamase structure and function using random replacement mutagenesis. Palzkill T; Botstein D Proteins; 1992 Sep; 14(1):29-44. PubMed ID: 1329081 [TBL] [Abstract][Full Text] [Related]
3. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. Petrosino JF; Palzkill T J Bacteriol; 1996 Apr; 178(7):1821-8. PubMed ID: 8606154 [TBL] [Abstract][Full Text] [Related]
4. Predictive analysis of ceftazidime hydrolysis in CTX-M-type beta-lactamase family members with a mutational substitution at position 167. Kimura S; Ishii Y; Tateda K; Yamaguchi K Int J Antimicrob Agents; 2007 Mar; 29(3):326-31. PubMed ID: 17258896 [TBL] [Abstract][Full Text] [Related]
5. Extension of the hydrolysis spectrum of AmpC beta-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix. Mammeri H; Poirel L; Nordmann P J Antimicrob Chemother; 2007 Sep; 60(3):490-4. PubMed ID: 17586561 [TBL] [Abstract][Full Text] [Related]
6. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648 [TBL] [Abstract][Full Text] [Related]
7. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1. Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158 [TBL] [Abstract][Full Text] [Related]
8. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties. Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892 [TBL] [Abstract][Full Text] [Related]
9. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Orencia MC; Yoon JS; Ness JE; Stemmer WP; Stevens RC Nat Struct Biol; 2001 Mar; 8(3):238-42. PubMed ID: 11224569 [TBL] [Abstract][Full Text] [Related]
10. Characteristic analysis of the ampC gene encoding beta-lactamase from Photobacterium phosphoreum. Lin JW; Weng SF; Chao YF; Chung YT Biochem Biophys Res Commun; 2005 Jan; 326(3):539-47. PubMed ID: 15596133 [TBL] [Abstract][Full Text] [Related]
11. Modifying the specificity and activity of the Enterobacter cloacae P99 beta-lactamase by mutagenesis within an M13 phage vector. Siemers NO; Yelton DE; Bajorath J; Senter PD Biochemistry; 1996 Feb; 35(7):2104-11. PubMed ID: 8652552 [TBL] [Abstract][Full Text] [Related]
12. An engineered disulfide bond between residues 69 and 238 in extended-spectrum beta-lactamase Toho-1 reduces its activity toward third-generation cephalosporins. Shimizu-Ibuka A; Matsuzawa H; Sakai H Biochemistry; 2004 Dec; 43(50):15737-45. PubMed ID: 15595829 [TBL] [Abstract][Full Text] [Related]
13. AmpC beta-lactamase in an Escherichia coli clinical isolate confers resistance to expanded-spectrum cephalosporins. Mammeri H; Nazic H; Naas T; Poirel L; Léotard S; Nordmann P Antimicrob Agents Chemother; 2004 Oct; 48(10):4050-3. PubMed ID: 15388478 [TBL] [Abstract][Full Text] [Related]
14. Comment on: extension of the hydrolysis spectrum of AmpC beta-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix. Sohn SG; Lee JJ; Sohn ES; Kang LW; Lee SH J Antimicrob Chemother; 2008 Apr; 61(4):965-6; author reply 966. PubMed ID: 18227084 [No Abstract] [Full Text] [Related]
15. New non-detrimental DNA-binding mutants of the Escherichia coli initiator protein DnaA. Asklund M; Atlung T J Mol Biol; 2005 Jan; 345(4):717-30. PubMed ID: 15588821 [TBL] [Abstract][Full Text] [Related]
16. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase. Palzkill T; Botstein D J Bacteriol; 1992 Aug; 174(16):5237-43. PubMed ID: 1644749 [TBL] [Abstract][Full Text] [Related]
17. Amino acid substitution analysis of E. coli thymidylate synthase: the study of a highly conserved region at the N-terminus. Kim CW; Michaels ML; Miller JH Proteins; 1992 Aug; 13(4):352-63. PubMed ID: 1518803 [TBL] [Abstract][Full Text] [Related]
18. A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous beta-lactamase activity on nitrocefin. Rashamuse K; Magomani V; Ronneburg T; Brady D Appl Microbiol Biotechnol; 2009 Jun; 83(3):491-500. PubMed ID: 19190902 [TBL] [Abstract][Full Text] [Related]
19. Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase. Weston GS; Blázquez J; Baquero F; Shoichet BK J Med Chem; 1998 Nov; 41(23):4577-86. PubMed ID: 9804697 [TBL] [Abstract][Full Text] [Related]
20. Deep sequencing of systematic combinatorial libraries reveals β-lactamase sequence constraints at high resolution. Deng Z; Huang W; Bakkalbasi E; Brown NG; Adamski CJ; Rice K; Muzny D; Gibbs RA; Palzkill T J Mol Biol; 2012 Dec; 424(3-4):150-67. PubMed ID: 23017428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]