These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 8637016)

  • 1. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes.
    Gazit E; Miller IR; Biggin PC; Sansom MS; Shai Y
    J Mol Biol; 1996 May; 258(5):860-70. PubMed ID: 8637016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles.
    Gazit E; Boman A; Boman HG; Shai Y
    Biochemistry; 1995 Sep; 34(36):11479-88. PubMed ID: 7547876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation.
    Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ
    Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D-NMR and ATR-FTIR study of the structure of a cell-selective diastereomer of melittin and its orientation in phospholipids.
    Sharon M; Oren Z; Shai Y; Anglister J
    Biochemistry; 1999 Nov; 38(46):15305-16. PubMed ID: 10563816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation in lipid bilayers of a synthetic peptide representing the C-terminus of the A1 domain of shiga toxin. A polarized ATR-FTIR study.
    Menikh A; Saleh MT; Gariépy J; Boggs JM
    Biochemistry; 1997 Dec; 36(50):15865-72. PubMed ID: 9398319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and organization of hemolytic and nonhemolytic diastereomers of antimicrobial peptides in membranes.
    Hong J; Oren Z; Shai Y
    Biochemistry; 1999 Dec; 38(51):16963-73. PubMed ID: 10606532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2001 Jan; 40(2):474-82. PubMed ID: 11148042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 1. Studies of the conformation, intrabilayer orientation, and amide hydrogen exchangeability of Ac-K2-(LA)12-K2-amide.
    Zhang YP; Lewis RN; Henry GD; Sykes BD; Hodges RS; McElhaney RN
    Biochemistry; 1995 Feb; 34(7):2348-61. PubMed ID: 7857945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode of action of the antibacterial cecropin B2: a spectrofluorometric study.
    Gazit E; Lee WJ; Brey PT; Shai Y
    Biochemistry; 1994 Sep; 33(35):10681-92. PubMed ID: 8075068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared spectroscopy of supported lipid monolayer, bilayer, and multibilayer membranes.
    Silvestro L; Axelsen PH
    Chem Phys Lipids; 1998 Nov; 96(1-2):69-80. PubMed ID: 9871983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATR-FTIR study of the structure and orientation of transmembrane domains of the Saccharomyces cerevisiae alpha-mating factor receptor in phospholipids.
    Ding FX; Xie H; Arshava B; Becker JM; Naider F
    Biochemistry; 2001 Jul; 40(30):8945-54. PubMed ID: 11467956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study on the structure and function of a cytolytic alpha-helical peptide and its antimicrobial beta-sheet diastereomer.
    Oren Z; Hong J; Shai Y
    Eur J Biochem; 1999 Jan; 259(1-2):360-9. PubMed ID: 9914515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclization of a cytolytic amphipathic alpha-helical peptide and its diastereomer: effect on structure, interaction with model membranes, and biological function.
    Oren Z; Shai Y
    Biochemistry; 2000 May; 39(20):6103-14. PubMed ID: 10821683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conformational analysis of peptides using Fourier transform IR spectroscopy.
    Haris PI; Chapman D
    Biopolymers; 1995; 37(4):251-63. PubMed ID: 7540054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes.
    Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN
    Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane.
    Bernèche S; Nina M; Roux B
    Biophys J; 1998 Oct; 75(4):1603-18. PubMed ID: 9746504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A leucine zipper-like sequence from the cytoplasmic tail of the HIV-1 envelope glycoprotein binds and perturbs lipid bilayers.
    Kliger Y; Shai Y
    Biochemistry; 1997 Apr; 36(17):5157-69. PubMed ID: 9136877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.