These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission. Arnoult KM; Wdowiak TJ; Beegle LW Astrophys J; 2000 Jun; 535(2 Pt 1):815-22. PubMed ID: 11543517 [TBL] [Abstract][Full Text] [Related]
9. A search for C60 in carbonaceous chondrites. De Vries MS; Reihs K; Wendt HR; Golden WG; Hunziker HE; Fleming R; Peterson E; Chang S Geochim Cosmochim Acta; 1993; 57():933-8. PubMed ID: 11539455 [TBL] [Abstract][Full Text] [Related]
10. Inference of a 7.75 eV lower limit in the ultraviolet pumping of interstellar polycyclic aromatic hydrocarbon cations with resulting unidentified infrared emissions. Robinson MS; Beegle LW; Wdowiak TJ Astrophys J; 1997 Jan; 474(1):474-8. PubMed ID: 11540592 [TBL] [Abstract][Full Text] [Related]
11. The discovery of a new infrared emission feature at 1905 wavenumbers (5.25 microns) in the spectrum of BD +30 degrees 3639 and its relation to the polycyclic aromatic hydrocarbon model. Allamandola LJ; Bregman JD; Sandford SA; Tielens AG; Witteborn FC; Wooden DH; Rank D Astrophys J; 1989 Oct; 345(1):L59-62. PubMed ID: 11538325 [TBL] [Abstract][Full Text] [Related]
12. Spectroscopic properties of polycyclic aromatic hydrocarbons (PAHs) and astrophysical implications. d'Hendecourt L; Ehrenfreund P Adv Space Res; 1997; 19(7):1023-32. PubMed ID: 11541329 [TBL] [Abstract][Full Text] [Related]
13. Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 2. The members of the thermodynamically most favorable series through coronene. Hudgins DM; Allamandola LJ J Phys Chem; 1995 Mar; 99(10):3033-46. PubMed ID: 11538457 [TBL] [Abstract][Full Text] [Related]
14. The spacing of the interstellar 6.2 and 7.7 micron emission features as an indicator of polycyclic aromatic hydrocarbon size. Hudgins DM; Allamandola LJ Astrophys J; 1999 Mar; 513(1 Pt 2):L69-73. PubMed ID: 11543062 [TBL] [Abstract][Full Text] [Related]
15. Is a pyrene-like molecular ion the cause of the 4,430-angstroms diffuse interstellar absorption band? Salama F; Allamandola LJ Nature; 1992 Jul; 358(6381):42-3. PubMed ID: 11536498 [TBL] [Abstract][Full Text] [Related]
16. Simulated infrared emission spectra of highly excited polyatomic molecules: a detailed model of the PAH-UIR hypothesis. Cook DJ; Saykally RJ Astrophys J; 1998 Feb; 493 Pt 1(2):793-802. PubMed ID: 11541733 [TBL] [Abstract][Full Text] [Related]
17. Origin of the hydrocarbon component of carbonaceous chondrites: the star-meteorite connection. Lee W; Wdowiak TJ Astrophys J; 1993 Nov; 417(1):L49-51. PubMed ID: 11539449 [TBL] [Abstract][Full Text] [Related]
18. Spatial variation of the 3.29 and 3.40 micron emission bands within reflection nebulae and the photochemical evolution of methylated polycyclic aromatic hydrocarbons. Joblin C; Tielens AG; Allamandola LJ; Geballe TR Astrophys J; 1996 Feb; 458(2 Pt 1):610-20. PubMed ID: 11538557 [TBL] [Abstract][Full Text] [Related]
19. Insoluble organic material of the Orgueil carbonaceous chondrite and the unidentified infrared bands. Wdowiak TJ; Flickinger GC; Cronin JR Astrophys J; 1988 May; 328(2):L75-9. PubMed ID: 11538467 [TBL] [Abstract][Full Text] [Related]