These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
923 related articles for article (PubMed ID: 8637596)
1. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Olshausen BA; Field DJ Nature; 1996 Jun; 381(6583):607-9. PubMed ID: 8637596 [TBL] [Abstract][Full Text] [Related]
2. Natural image statistics and efficient coding. Olshausen BA; Field DJ Network; 1996 May; 7(2):333-9. PubMed ID: 16754394 [TBL] [Abstract][Full Text] [Related]
3. Is sparse and distributed the coding goal of simple cells? Zhao L Biol Cybern; 2004 Dec; 91(6):408-16. PubMed ID: 15597179 [TBL] [Abstract][Full Text] [Related]
4. Quadratic forms in natural images. Hashimoto W Network; 2003 Nov; 14(4):765-88. PubMed ID: 14653502 [TBL] [Abstract][Full Text] [Related]
5. Development of localized oriented receptive fields by learning a translation-invariant code for natural images. Rao RP; Ballard DH Network; 1998 May; 9(2):219-34. PubMed ID: 9861987 [TBL] [Abstract][Full Text] [Related]
7. Nonlinear and extra-classical receptive field properties and the statistics of natural scenes. Zetzsche C; Röhrbein F Network; 2001 Aug; 12(3):331-50. PubMed ID: 11563533 [TBL] [Abstract][Full Text] [Related]
8. Complex cell pooling and the statistics of natural images. Hyvärinen A; Köster U Network; 2007 Jun; 18(2):81-100. PubMed ID: 17852755 [TBL] [Abstract][Full Text] [Related]
9. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability. Tanaka T; Aoyagi T; Kaneko T Neural Comput; 2012 Oct; 24(10):2700-25. PubMed ID: 22845820 [TBL] [Abstract][Full Text] [Related]
11. Shaping up simple cell's receptive field of animal vision by ICA and its application in navigation system. Zhang L; Mei J Neural Netw; 2003; 16(5-6):609-15. PubMed ID: 12850014 [TBL] [Abstract][Full Text] [Related]
12. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system. Rolls ET; Tromans JM; Stringer SM Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392 [TBL] [Abstract][Full Text] [Related]
13. A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex. Watson AB; Ahumada AJ IEEE Trans Biomed Eng; 1989 Jan; 36(1):97-106. PubMed ID: 2921066 [TBL] [Abstract][Full Text] [Related]
14. Analysis of a correlation-based model for the development of orientation-selective receptive fields in the visual cortex. Wimbauer S; Gerstner W; van Hemmen JL Network; 1998 Nov; 9(4):449-66. PubMed ID: 10221574 [TBL] [Abstract][Full Text] [Related]
15. Spatial structure of complex cell receptive fields measured with natural images. Touryan J; Felsen G; Dan Y Neuron; 2005 Mar; 45(5):781-91. PubMed ID: 15748852 [TBL] [Abstract][Full Text] [Related]
16. Statistical models of natural images and cortical visual representation. Hyvärinen A Top Cogn Sci; 2010 Apr; 2(2):251-64. PubMed ID: 25163788 [TBL] [Abstract][Full Text] [Related]
17. Receptive field self-organization in a model of the fine structure in v1 cortical columns. Lücke J Neural Comput; 2009 Oct; 21(10):2805-45. PubMed ID: 19548804 [TBL] [Abstract][Full Text] [Related]
18. Neuromorphic VLSI vision system for real-time texture segregation. Shimonomura K; Yagi T Neural Netw; 2008 Oct; 21(8):1197-204. PubMed ID: 18723317 [TBL] [Abstract][Full Text] [Related]
19. Characterizing the sparseness of neural codes. Willmore B; Tolhurst DJ Network; 2001 Aug; 12(3):255-70. PubMed ID: 11563529 [TBL] [Abstract][Full Text] [Related]