BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 8637911)

  • 1. Molecular mechanism of transmembrane signaling by the aspartate receptor: a model.
    Chervitz SA; Falke JJ
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2545-50. PubMed ID: 8637911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lock on/off disulfides identify the transmembrane signaling helix of the aspartate receptor.
    Chervitz SA; Falke JJ
    J Biol Chem; 1995 Oct; 270(41):24043-53. PubMed ID: 7592603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane signaling by the aspartate receptor: engineered disulfides reveal static regions of the subunit interface.
    Chervitz SA; Lin CM; Falke JJ
    Biochemistry; 1995 Aug; 34(30):9722-33. PubMed ID: 7626643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered socket study of signaling through a four-helix bundle: evidence for a yin-yang mechanism in the kinase control module of the aspartate receptor.
    Swain KE; Gonzalez MA; Falke JJ
    Biochemistry; 2009 Oct; 48(39):9266-77. PubMed ID: 19705835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity.
    Starrett DJ; Falke JJ
    Biochemistry; 2005 Feb; 44(5):1550-60. PubMed ID: 15683239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching.
    Coleman MD; Bass RB; Mehan RS; Falke JJ
    Biochemistry; 2005 May; 44(21):7687-95. PubMed ID: 15909983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refined structures of the ligand-binding domain of the aspartate receptor from Salmonella typhimurium.
    Scott WG; Milligan DL; Milburn MV; Privé GG; Yeh J; Koshland DE; Kim SH
    J Mol Biol; 1993 Jul; 232(2):555-73. PubMed ID: 8345523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine and disulfide scanning reveals two amphiphilic helices in the linker region of the aspartate chemoreceptor.
    Butler SL; Falke JJ
    Biochemistry; 1998 Jul; 37(30):10746-56. PubMed ID: 9692965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling domain of the aspartate receptor is a helical hairpin with a localized kinase docking surface: cysteine and disulfide scanning studies.
    Bass RB; Coleman MD; Falke JJ
    Biochemistry; 1999 Jul; 38(29):9317-27. PubMed ID: 10413506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of a conserved alpha-helix in the kinase-docking region of the aspartate receptor by cysteine and disulfide scanning.
    Bass RB; Falke JJ
    J Biol Chem; 1998 Sep; 273(39):25006-14. PubMed ID: 9737956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attractant- and disulfide-induced conformational changes in the ligand binding domain of the chemotaxis aspartate receptor: a 19F NMR study.
    Danielson MA; Biemann HP; Koshland DE; Falke JJ
    Biochemistry; 1994 May; 33(20):6100-9. PubMed ID: 7910759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a site critical for kinase regulation on the central processing unit (CPU) helix of the aspartate receptor.
    Trammell MA; Falke JJ
    Biochemistry; 1999 Jan; 38(1):329-36. PubMed ID: 9890914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The aspartate receptor cytoplasmic domain: in situ chemical analysis of structure, mechanism and dynamics.
    Bass RB; Falke JJ
    Structure; 1999 Jul; 7(7):829-40. PubMed ID: 10425684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A piston model for transmembrane signaling of the aspartate receptor.
    Ottemann KM; Xiao W; Shin YK; Koshland DE
    Science; 1999 Sep; 285(5434):1751-4. PubMed ID: 10481014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that the adaptation region of the aspartate receptor is a dynamic four-helix bundle: cysteine and disulfide scanning studies.
    Winston SE; Mehan R; Falke JJ
    Biochemistry; 2005 Sep; 44(38):12655-66. PubMed ID: 16171380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine and disulfide scanning reveals a regulatory alpha-helix in the cytoplasmic domain of the aspartate receptor.
    Danielson MA; Bass RB; Falke JJ
    J Biol Chem; 1997 Dec; 272(52):32878-88. PubMed ID: 9407066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the conserved HAMP domain in an intact, membrane-bound chemoreceptor: a disulfide mapping study.
    Swain KE; Falke JJ
    Biochemistry; 2007 Dec; 46(48):13684-95. PubMed ID: 17994770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attractant regulation of the aspartate receptor-kinase complex: limited cooperative interactions between receptors and effects of the receptor modification state.
    Bornhorst JA; Falke JJ
    Biochemistry; 2000 Aug; 39(31):9486-93. PubMed ID: 10924144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping out regions on the surface of the aspartate receptor that are essential for kinase activation.
    Mehan RS; White NC; Falke JJ
    Biochemistry; 2003 Mar; 42(10):2952-9. PubMed ID: 12627961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The design and development of Tar-EnvZ chimeric receptors.
    Yoshida T; Phadtare S; Inouye M
    Methods Enzymol; 2007; 423():166-83. PubMed ID: 17609131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.