These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1117 related articles for article (PubMed ID: 8638406)
1. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1. Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406 [TBL] [Abstract][Full Text] [Related]
2. Naturally occurring amino acid polymorphisms in human immunodeficiency virus type 1 (HIV-1) Gag p7(NC) and the C-cleavage site impact Gag-Pol processing by HIV-1 protease. Goodenow MM; Bloom G; Rose SL; Pomeroy SM; O'Brien PO; Perez EE; Sleasman JW; Dunn BM Virology; 2002 Jan; 292(1):137-49. PubMed ID: 11878916 [TBL] [Abstract][Full Text] [Related]
3. Compensatory mutations at the HIV cleavage sites p7/p1 and p1/p6-gag in therapy-naive and therapy-experienced patients. Verheyen J; Litau E; Sing T; Däumer M; Balduin M; Oette M; Fätkenheuer G; Rockstroh JK; Schuldenzucker U; Hoffmann D; Pfister H; Kaiser R Antivir Ther; 2006; 11(7):879-87. PubMed ID: 17302250 [TBL] [Abstract][Full Text] [Related]
4. Impact of HIV type 1 protease, reverse transcriptase, cleavage site, and p6 mutations on the virological response to quadruple therapy with saquinavir, ritonavir, and two nucleoside analogs. Kaufmann GR; Suzuki K; Cunningham P; Mukaide M; Kondo M; Imai M; Zaunders J; Cooper DA AIDS Res Hum Retroviruses; 2001 Apr; 17(6):487-97. PubMed ID: 11350662 [TBL] [Abstract][Full Text] [Related]
5. Polymorphism of HIV type 1 gag p7/p1 and p1/p6 cleavage sites: clinical significance and implications for resistance to protease inhibitors. Bally F; Martinez R; Peters S; Sudre P; Telenti A AIDS Res Hum Retroviruses; 2000 Sep; 16(13):1209-13. PubMed ID: 10957718 [TBL] [Abstract][Full Text] [Related]
6. Contribution of the Gag-Pol transframe domain p6* and its coding sequence to morphogenesis and replication of human immunodeficiency virus type 1. Paulus C; Ludwig C; Wagner R Virology; 2004 Dec; 330(1):271-83. PubMed ID: 15527852 [TBL] [Abstract][Full Text] [Related]
7. High variability of the gag/pol transframe region among HIV-1 isolates. Candotti D; Chappey C; Rosenheim M; M'Pelé P; Huraux JM; Agut H C R Acad Sci III; 1994 Feb; 317(2):183-9. PubMed ID: 7994608 [TBL] [Abstract][Full Text] [Related]
8. Amino acid insertions near Gag cleavage sites restore the otherwise compromised replication of human immunodeficiency virus type 1 variants resistant to protease inhibitors. Tamiya S; Mardy S; Kavlick MF; Yoshimura K; Mistuya H J Virol; 2004 Nov; 78(21):12030-40. PubMed ID: 15479842 [TBL] [Abstract][Full Text] [Related]
10. Characterization of gag and pol sequences from long-term survivors of human immunodeficiency virus type 1 infection. Huang Y; Zhang L; Ho DD Virology; 1998 Jan; 240(1):36-49. PubMed ID: 9448687 [TBL] [Abstract][Full Text] [Related]
11. In vivo processing of Pr160gag-pol from human immunodeficiency virus type 1 (HIV) in acutely infected, cultured human T-lymphocytes. Lindhofer H; von der Helm K; Nitschko H Virology; 1995 Dec; 214(2):624-7. PubMed ID: 8553565 [TBL] [Abstract][Full Text] [Related]
12. Resistance to nucleoside analog reverse transcriptase inhibitors mediated by human immunodeficiency virus type 1 p6 protein. Peters S; Muñoz M; Yerly S; Sanchez-Merino V; Lopez-Galindez C; Perrin L; Larder B; Cmarko D; Fakan S; Meylan P; Telenti A J Virol; 2001 Oct; 75(20):9644-53. PubMed ID: 11559796 [TBL] [Abstract][Full Text] [Related]
14. Human immunodeficiency virus type 1 protease cleavage site mutations associated with protease inhibitor cross-resistance selected by indinavir, ritonavir, and/or saquinavir. Côté HC; Brumme ZL; Harrigan PR J Virol; 2001 Jan; 75(2):589-94. PubMed ID: 11134271 [TBL] [Abstract][Full Text] [Related]
15. Extensive regions of pol are required for efficient human immunodeficiency virus polyprotein processing and particle maturation. Quillent C; Borman AM; Paulous S; Dauguet C; Clavel F Virology; 1996 May; 219(1):29-36. PubMed ID: 8623542 [TBL] [Abstract][Full Text] [Related]
16. In vitro processing of HIV-1 nucleocapsid protein by the viral proteinase: effects of amino acid substitutions at the scissile bond in the proximal zinc finger sequence. Tözsér J; Shulenin S; Louis JM; Copeland TD; Oroszlan S Biochemistry; 2004 Apr; 43(14):4304-12. PubMed ID: 15065874 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of Vpr into human immunodeficiency virus type 1: role of conserved regions within the P6 domain of Pr55gag. Checroune F; Yao XJ; Göttlinger HG; Bergeron D; Cohen EA J Acquir Immune Defic Syndr Hum Retrovirol; 1995 Sep; 10(1):1-7. PubMed ID: 7648278 [TBL] [Abstract][Full Text] [Related]
18. Proteolytic activity of human immunodeficiency virus Vpr- and Vpx-protease fusion proteins. Wu X; Liu H; Xiao H; Kappes JC Virology; 1996 May; 219(1):307-13. PubMed ID: 8623547 [TBL] [Abstract][Full Text] [Related]
19. Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites. Zhang YM; Imamichi H; Imamichi T; Lane HC; Falloon J; Vasudevachari MB; Salzman NP J Virol; 1997 Sep; 71(9):6662-70. PubMed ID: 9261388 [TBL] [Abstract][Full Text] [Related]
20. Cooperative contribution of gag substitutions to nelfinavir-dependent enhancement of precursor cleavage and replication of human immunodeficiency virus type-1. Matsuoka-Aizawa S; Gatanaga H; Sato H; Koike K; Kimura S; Oka S Antiviral Res; 2006 Jun; 70(2):51-9. PubMed ID: 16487604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]