These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 863862)

  • 1. Initial characterization of hexose and hexitol phosphoenolpyruvate-dependent phosphotransferases of Staphylococcus aureus.
    Friedman SA; Hays JB
    J Bacteriol; 1977 Jun; 130(3):991-9. PubMed ID: 863862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships.
    Saier MH
    Bacteriol Rev; 1977 Dec; 41(4):856-71. PubMed ID: 339892
    [No Abstract]   [Full Text] [Related]  

  • 4. Direct transfer of the phosphoryl moiety of mannitol 1-phosphate to [14C]mannitol catalyzed by the enzyme II complexes of the phosphoenolpyruvate: mannitol phosphotransferase systems in Spirochaeta aurantia and Salmonella typhimurium.
    Saier MH; Newman MJ
    J Biol Chem; 1976 Jun; 251(12):3834-7. PubMed ID: 819432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli.
    Kornberg HL; Reeves RE
    Biochem J; 1972 Aug; 128(5):1339-44. PubMed ID: 4345358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes related to fructose utilization in Pseudomonas cepacia.
    Allenza P; Lee YN; Lessie TG
    J Bacteriol; 1982 Jun; 150(3):1348-56. PubMed ID: 6281243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mannitol transport in Streptococcus mutans.
    Maryanski JH; Wittenberger CL
    J Bacteriol; 1975 Dec; 124(3):1475-81. PubMed ID: 1194241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli.
    Kaback HR
    J Biol Chem; 1968 Jul; 243(13):3711-24. PubMed ID: 4872728
    [No Abstract]   [Full Text] [Related]  

  • 9. Photoinactivation of the Staphylococcus aureus Lactose-Specific EIICB Phosphotransferase Component with p-azidophenyl-β-D-Galactoside and Phosphorylation of the Covalently Bound Substrate.
    Sossna-Wunder G; Hengstenberg W; Briozzo P; Deutscher J
    J Mol Microbiol Biotechnol; 2018; 28(3):147-158. PubMed ID: 30522128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of hexitol catabolism in Streptococcus mutans.
    Dills SS; Seno S
    J Bacteriol; 1983 Feb; 153(2):861-6. PubMed ID: 6401708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose transport in Streptococcus mutans: preparation of cytoplasmic membranes and characteristics of phosphotransferase activity.
    Schachtele CF
    J Dent Res; 1975; 54(2):330-8. PubMed ID: 1054344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system: sequence comparisons.
    Saier MH; Yamada M; Erni B; Suda K; Lengeler J; Ebner R; Argos P; Rak B; Schnetz K; Lee CA
    FASEB J; 1988 Mar; 2(3):199-208. PubMed ID: 2832233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature and properties of hexitol transport systems in Escherichia coli.
    Lengeler J
    J Bacteriol; 1975 Oct; 124(1):39-47. PubMed ID: 1100608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the mechanism of phosphorylation and transport of beta-galactosides by the lactose phosphotransferase system of Staphylococcus aureus. Kinetic investigations using tosyl galactosides as reversible dead-end inhibitors.
    Hays JB; Sussman ML
    Biochim Biophys Acta; 1976 Aug; 443(2):267-83. PubMed ID: 953019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system.
    Saier MH; Roseman S
    J Biol Chem; 1976 Nov; 251(21):6606-15. PubMed ID: 789370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in Streptococcus mutans NCTC 10449.
    Slee AM; Tanzer JM
    Infect Immun; 1979 Jun; 24(3):821-8. PubMed ID: 468377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization and transport of hexoses by mutant strains of Salmonella typhimurium lacking enzyme I of the phosphoenolpyruvate-dependent phosphotransferase system.
    Saier MH; Young WS; Roseman S
    J Biol Chem; 1971 Sep; 246(18):5838-40. PubMed ID: 4938041
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans.
    St Martin EJ; Wittenberger CL
    Infect Immun; 1979 Jun; 24(3):865-8. PubMed ID: 468378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate transport in Clostridium pasteurianum.
    Booth IR; Morris JG
    Biosci Rep; 1982 Jan; 2(1):47-53. PubMed ID: 6277409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bacterial phosphotransferase system: kinetic characterization of the glucose, mannitol, glucitol, and N-acetylglucosamine systems.
    Grenier FC; Waygood EB; Saier MH
    J Cell Biochem; 1986; 31(2):97-105. PubMed ID: 3015992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.