These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 8638679)

  • 1. Electrophysiological characterization of RACTK1 K+ channel in stable cell line.
    Suzuki M; Murata M; Ikeda M; Miyoshi T; Imai M
    Am J Physiol; 1996 Mar; 270(3 Pt 1):C964-8. PubMed ID: 8638679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional activation of RACTK1 K+ channel gene by apical alkalization in renal cortical collecting duct cells.
    Ikeda M; Murata M; Miyoshi T; Tamba K; Muto S; Imai M; Suzuki M
    J Clin Invest; 1996 Jul; 98(2):474-81. PubMed ID: 8755659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of a pH-sensitive K+ channel possessing two transmembrane segments.
    Suzuki M; Takahashi K; Ikeda M; Hayakawa H; Ogawa A; Kawaguchi Y; Sakai O
    Nature; 1994 Feb; 367(6464):642-5. PubMed ID: 8107848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation by GTP of a Ca(2+)-activated K+ channel in the apical membrane of rabbit cortical collecting duct cells.
    Suzuki M; Takahashi K; Sakai O
    J Membr Biol; 1994 Jul; 141(1):43-50. PubMed ID: 7966244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca(2+)-dependent K+ channels in the cortical collecting duct of rat.
    Hirsch JR; Schlatter E
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):485-8. PubMed ID: 9261990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of stably expressed and native BK channels from human myometrium by cGMP- and cAMP-dependent protein kinase.
    Zhou XB; Schlossmann J; Hofmann F; Ruth P; Korth M
    Pflugers Arch; 1998 Oct; 436(5):725-34. PubMed ID: 9716706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinterpretation of the RACTK1 K+ channel.
    Shmukler B; Sun T; Brugnara C; Alper SL
    Am J Physiol; 1997 Jan; 272(1 Pt 1):C350-4. PubMed ID: 9038842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial apamin sensitivity of human small conductance Ca2+-activated K+ channels stably expressed in Chinese hamster ovary cells.
    Dale TJ; Cryan JE; Chen MX; Trezise DJ
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):470-7. PubMed ID: 12382077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of a pH sensitive K+ channel in the kidney.
    Suzuki M
    Nihon Jinzo Gakkai Shi; 1995 Aug; 37(8):422-7. PubMed ID: 7563949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracing the origin of the RACTK1 K(+) channel.
    Ortega B; Beesley AH; Hornby D; White SJ
    Biochem Biophys Res Commun; 2000 Oct; 277(1):147-51. PubMed ID: 11027655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two types of K+ channel in thick ascending limb of rat kidney.
    Wang WH
    Am J Physiol; 1994 Oct; 267(4 Pt 2):F599-605. PubMed ID: 7943358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional and molecular evidence for Shaker-like K+ channels in rabbit renal papillary epithelial cell line.
    Volk KA; Husted RF; Pruchno CJ; Stokes JB
    Am J Physiol; 1994 Oct; 267(4 Pt 2):F671-8. PubMed ID: 7524363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.
    Farley J; Rudy B
    Biophys J; 1988 Jun; 53(6):919-34. PubMed ID: 2456105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties and function of KCNQ1 K+ channels isolated from the rectal gland of Squalus acanthias.
    Kerst G; Beschorner U; Unsöld B; von Hahn T; Schreiber R; Greger R; Gerlach U; Lang HJ; Kunzelmann K; Bleich M
    Pflugers Arch; 2001 Oct; 443(1):146-54. PubMed ID: 11692278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charybdotoxin-sensitive small conductance K(Ca) channel activated by bradykinin and substance P in endothelial cells.
    Sollini M; Frieden M; Bény JL
    Br J Pharmacol; 2002 Aug; 136(8):1201-9. PubMed ID: 12163354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of renal tubule epithelial cells by simian virus-40 is associated with emergence of Ca(2+)-insensitive K+ channels and altered mitogenic sensitivity to K+ channel blockers.
    Teulon J; Ronco PM; Geniteau-Legendre M; Baudouin B; Estrade S; Cassingena R; Vandewalle A
    J Cell Physiol; 1992 Apr; 151(1):113-25. PubMed ID: 1373146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of actin cytoskeleton in modulation of apical K channel activity in rat collecting duct.
    Wang WH; Cassola A; Giebisch G
    Am J Physiol; 1994 Oct; 267(4 Pt 2):F592-8. PubMed ID: 7943357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells.
    Lachheb S; Cluzeaud F; Bens M; Genete M; Hibino H; Lourdel S; Kurachi Y; Vandewalle A; Teulon J; Paulais M
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1398-407. PubMed ID: 18367659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel.
    Woda CB; Bragin A; Kleyman TR; Satlin LM
    Am J Physiol Renal Physiol; 2001 May; 280(5):F786-93. PubMed ID: 11292620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apical sorting of a voltage- and Ca2+-activated K+ channel alpha -subunit in Madin-Darby canine kidney cells is independent of N-glycosylation.
    Bravo-Zehnder M; Orio P; Norambuena A; Wallner M; Meera P; Toro L; Latorre R; González A
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13114-9. PubMed ID: 11069304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.