These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 8638932)

  • 1. Nitric oxide diffusion in membranes determined by fluorescence quenching.
    Denicola A; Souza JM; Radi R; Lissi E
    Arch Biochem Biophys; 1996 Apr; 328(1):208-12. PubMed ID: 8638932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion of alpha-tocopherol in membrane models: probing the kinetics of vitamin E antioxidant action by fluorescence in real time.
    Gramlich G; Zhang J; Nau WM
    J Am Chem Soc; 2004 May; 126(17):5482-92. PubMed ID: 15113220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen diffusion-concentration in erythrocyte plasma membranes studied by the fluorescence quenching of anionic and cationic pyrene derivatives.
    Lissi EA; Caceres T
    J Bioenerg Biomembr; 1989 Jun; 21(3):375-85. PubMed ID: 2745401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching.
    Möller MN; Denicola A
    Free Radic Biol Med; 2018 Nov; 128():137-143. PubMed ID: 29673655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temperature, cholesterol content, and antioxidant structure on the mobility of vitamin E constituents in biomembrane models studied by laterally diffusion-controlled fluorescence quenching.
    Sonnen AF; Bakirci H; Netscher T; Nau WM
    J Am Chem Soc; 2005 Nov; 127(44):15575-84. PubMed ID: 16262423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane fluidity and oxygen diffusion in cholesterol-enriched erythrocyte membrane.
    Dumas D; Muller S; Gouin F; Baros F; Viriot ML; Stoltz JF
    Arch Biochem Biophys; 1997 May; 341(1):34-9. PubMed ID: 9143350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of nitric oxide into low density lipoprotein.
    Denicola A; Batthyány C; Lissi E; Freeman BA; Rubbo H; Radi R
    J Biol Chem; 2002 Jan; 277(2):932-6. PubMed ID: 11689557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glutaraldehyde on hemoglobin-dependent quenching of pyrene fluorescence. Application to oxygen diffusion in erythrocyte.
    Dumas D; Gouin F; Viriot ML; Stoltz JF
    Clin Hemorheol Microcirc; 1997; 17(4):291-7. PubMed ID: 9493896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen diffusion in biological and artificial membranes determined by the fluorochrome pyrene.
    Fischkoff S; Vanderkooi JM
    J Gen Physiol; 1975 May; 65(5):663-76. PubMed ID: 1176942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The eosin-5-maleimide binding site on human erythrocyte band 3: investigation of membrane sidedness and location of charged residues by triplet state quenching.
    Pan RJ; Cherry RJ
    Biochemistry; 1998 Jul; 37(28):10238-45. PubMed ID: 9665731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth.
    Kaiser RD; London E
    Biochemistry; 1998 Jun; 37(22):8180-90. PubMed ID: 9609714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for estimating lateral diffusion coefficients in membranes from steady-state fluorescence quenching studies.
    Blackwell MF; Gounaris K; Zara SJ; Barber J
    Biophys J; 1987 May; 51(5):735-44. PubMed ID: 3593871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein.
    Möller M; Botti H; Batthyany C; Rubbo H; Radi R; Denicola A
    J Biol Chem; 2005 Mar; 280(10):8850-4. PubMed ID: 15632138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence sensing of nitric oxide in aqueous solution by triethanolamine-modified CdSe quantum dots.
    Yan XQ; Shang ZB; Zhang Z; Wang Y; Jin WJ
    Luminescence; 2009; 24(4):255-9. PubMed ID: 19294661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion.
    Quijano C; Romero N; Radi R
    Free Radic Biol Med; 2005 Sep; 39(6):728-41. PubMed ID: 16109303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological disposition of Cys 222 in the alpha-subunit of nicotinic acetylcholine receptor analyzed by fluorescence-quenching and electron paramagnetic resonance measurements.
    Kim J; McNamee MG
    Biochemistry; 1998 Mar; 37(13):4680-6. PubMed ID: 9521789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mechanism of change in the fluorescence parameters of pyrene and diphenylhexatriene in irradiated membranes].
    Fomenko BS; Dlimbetova GK
    Radiobiologiia; 1987; 27(1):85-7. PubMed ID: 3823384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of lateral diffusion of py(10)-PC and free pyrene in fluid DMPC bilayers.
    Martins J; Melo E
    Biophys J; 2001 Feb; 80(2):832-40. PubMed ID: 11159450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide diffusion coefficients in solutions, proteins and membranes determined by phosphorescence.
    Vanderkooi JM; Wright WW; Erecinska M
    Biochim Biophys Acta; 1994 Aug; 1207(2):249-54. PubMed ID: 8075157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The plasma membrane of erythrocytes plays a fundamental role in the transport of oxygen, carbon dioxide and nitric oxide and in the maintenance of the reduced state of the heme iron.
    De Rosa MC; Carelli Alinovi C; Galtieri A; Scatena R; Giardina B
    Gene; 2007 Aug; 398(1-2):162-71. PubMed ID: 17573207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.