These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Time resolved spectroscopy of the tryptophyl fluorescence of the E. coli LAC repressor. Brochon JC; Wahl P; Charlier M; Maurizot JC; Hélène C Biochem Biophys Res Commun; 1977 Dec; 79(4):1261-71. PubMed ID: 341890 [No Abstract] [Full Text] [Related]
4. Stopped-flow studies on the chemical modification with N-bromosuccinimide of model compounds of tryptophan residues. Ohnishi M; Kawagishi T; Abe T; Hiromi K J Biochem; 1980 Jan; 87(1):273-9. PubMed ID: 7358635 [TBL] [Abstract][Full Text] [Related]
5. Lac Repressor. Fluorescence of the two tryptophans. Sommer H; Lu P J Biol Chem; 1976 Jun; 251(12):3774-9. PubMed ID: 776975 [TBL] [Abstract][Full Text] [Related]
6. Selective N-bromosuccinimide oxidation of the nonfluorescent tryptophan-31 in the active center of thioredoxin from Escherichia coli. Holmgren A Biochemistry; 1981 May; 20(11):3204-7. PubMed ID: 7018569 [TBL] [Abstract][Full Text] [Related]
7. Chemical modification of the tryptophan residues of wheat-germ agglutinin. Effect on fluorescence and saccharide-binding properties. Privat JP; Lotan R; Bouchard P; Sharon N; Monsigny M Eur J Biochem; 1976 Sep; 68(2):563-72. PubMed ID: 976273 [TBL] [Abstract][Full Text] [Related]
8. [Chemical modification of tryptophan residues of leucyl tRNA synthetase by N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide]. Korneliuk AI; Shilin VV; Gudzera OI; Rozhko OT; Matsuka GKh Bioorg Khim; 1985 May; 11(5):605-12. PubMed ID: 3929794 [TBL] [Abstract][Full Text] [Related]
9. Modification of bovine alpha-lactalbumin with N-bromosuccinimide and 2-hydroxy-5-nitrobenzylbromide. Bell JE; Castellino FJ; Trayer IP; Hill RL J Biol Chem; 1975 Oct; 250(19):7579-85. PubMed ID: 809437 [TBL] [Abstract][Full Text] [Related]
10. Studies on tryptophan residues of Abrus agglutinin. Stopped-flow kinetics of modification and fluorescence-quenching studies. Patanjali SR; Swamy MJ; Surolia A Biochem J; 1987 Apr; 243(1):79-86. PubMed ID: 3606583 [TBL] [Abstract][Full Text] [Related]
11. Circular dichroism of mammalian follitropins and the effects of treatment with N-bromosuccinimide. Giudice LC; Pierce JG; Cheng KW; Whitley R; Ryan RJ Biochem Biophys Res Commun; 1978 Apr; 81(3):725-33. PubMed ID: 666786 [No Abstract] [Full Text] [Related]
13. Stopped-flow chemical modification with N-bromosuccinimide: a good probe for changes in the microenvironment of the Trp 62 residue of chicken egg white lysozyme. Ohnishi M; Kawagishi T; Hiromi K Arch Biochem Biophys; 1989 Jul; 272(1):46-51. PubMed ID: 2735767 [TBL] [Abstract][Full Text] [Related]
14. Effect of N-bromosuccinimide modification on dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli. Activity, spectrophotometric, fluorescence and circular dichroism studies. Williams MN J Biol Chem; 1975 Jan; 250(1):322-30. PubMed ID: 237891 [TBL] [Abstract][Full Text] [Related]
15. Bacillus cereus beta-lactamase. Reaction with N-bromosuccinimide and the properties of the product. Ogawara H; Umezawa H Biochim Biophys Acta; 1975 Jun; 391(2):435-47. PubMed ID: 807248 [TBL] [Abstract][Full Text] [Related]
16. On the oxidation of lysozyme by N-bromosuccinimide. Srivastava VK; Bigelow CC Biochim Biophys Acta; 1972 Dec; 285(2):373-6. PubMed ID: 4659647 [No Abstract] [Full Text] [Related]
17. Effects of oxidation of tryptophan residues in thioredoxin from Escherichia coli by N-bromosuccinimide. Holmgren A J Biol Chem; 1973 Jun; 248(11):4106-11. PubMed ID: 4145325 [No Abstract] [Full Text] [Related]
18. Inactivation of cytosolic aspartate aminotransferase accompanying modification of Trp 48 by N-bromosuccinimide. Nagashima F; Tanase S; Morino Y FEBS Lett; 1986 Mar; 197(1-2):129-33. PubMed ID: 3949009 [TBL] [Abstract][Full Text] [Related]