BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 8639511)

  • 1. Kinetics and mechanism of the hydrolysis of depsipeptides catalyzed by the beta-lactamase of Enterobacter cloacae P99.
    Xu Y; Soto G; Hirsch KR; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3595-603. PubMed ID: 8639511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase.
    Adediran SA; Pratt RF
    Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics.
    Kumar S; Adediran SA; Nukaga M; Pratt RF
    Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis.
    Adediran SA; Deraniyagala SA; Xu Y; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3604-13. PubMed ID: 8639512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the importance of a methyl group in beta-lactamase evolution: free energy profiles and molecular modeling.
    Bernstein NJ; Pratt RF
    Biochemistry; 1999 Aug; 38(32):10499-510. PubMed ID: 10441146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-(phenylacetyl)glycyl-D-aziridine-2-carboxylate, an acyclic amide substrate of beta-lactamases: importance of the shape of the substrate in beta-lactamase evolution.
    Murphy BP; Pratt RF
    Biochemistry; 1991 Apr; 30(15):3640-9. PubMed ID: 2015222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and mechanism of the serine beta-lactamase catalyzed hydrolysis of depsipeptides.
    Govardhan CP; Pratt RF
    Biochemistry; 1987 Jun; 26(12):3385-95. PubMed ID: 3115289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99.
    Adediran SA; Zhang Z; Nukaga M; Palzkill T; Pratt RF
    Biochemistry; 2005 May; 44(20):7543-52. PubMed ID: 15895997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases.
    Mustafi D; Hofer JE; Huang W; Palzkill T; Makinen MW
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1279-89. PubMed ID: 15134725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different transition-state structures for the reactions of beta-lactams and analogous beta-sultams with serine beta-lactamases.
    Tsang WY; Ahmed N; Hinchliffe PS; Wood JM; Harding LP; Laws AP; Page MI
    J Am Chem Soc; 2005 Dec; 127(49):17556-64. PubMed ID: 16332108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-lactamase-catalyzed aminolysis of depsipeptides: amine specificity and steady-state kinetics.
    Pazhanisamy S; Govardhan CP; Pratt RF
    Biochemistry; 1989 Aug; 28(17):6863-70. PubMed ID: 2819039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-lactamase-catalyzed aminolysis of depsipeptides: peptide inhibition and a new kinetic mechanism.
    Pazhanisamy S; Pratt RF
    Biochemistry; 1989 Aug; 28(17):6875-82. PubMed ID: 2819040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates.
    Nagarajan R; Pratt RF
    Biochemistry; 2004 Aug; 43(30):9664-73. PubMed ID: 15274621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New substrates for beta-lactam-recognizing enzymes: aryl malonamates.
    Cabaret D; Adediran SA; Pratt RF; Wakselman M
    Biochemistry; 2003 Jun; 42(22):6719-25. PubMed ID: 12779326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and structural consequences of the leaving group in substrates of a class C beta-lactamase.
    Ahn YM; Pratt RF
    Bioorg Med Chem; 2004 Mar; 12(6):1537-42. PubMed ID: 15018927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state kinetics of the binding of beta-lactams and penicilloates to the second binding site of the Enterobacter cloacae P99 beta-lactamase.
    Dryjanski M; Pratt RF
    Biochemistry; 1995 Mar; 34(11):3561-8. PubMed ID: 7893652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-lactamase-catalyzed aminolysis of depsipeptides: proof of the nonexistence of a specific D-phenylalanine/enzyme complex by double-label isotope trapping.
    Pazhanisamy S; Pratt RF
    Biochemistry; 1989 Aug; 28(17):6870-5. PubMed ID: 2684267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptidase activity of beta-lactamases.
    Rhazi N; Galleni M; Page MI; Frère JM
    Biochem J; 1999 Jul; 341 ( Pt 2)(Pt 2):409-13. PubMed ID: 10393100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relative catalytic efficiency of beta-lactamase catalyzed acyl and phosphyl transfer.
    Slater MJ; Laws AP; Page MI
    Bioorg Chem; 2001 Apr; 29(2):77-95. PubMed ID: 11300697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of beta-lactamases by monocyclic acyl phosph(on)ates.
    Kaur K; Adediran SA; Lan MJ; Pratt RF
    Biochemistry; 2003 Feb; 42(6):1529-36. PubMed ID: 12578365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.