These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 8639526)

  • 21. Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity.
    Schlieben NH; Niefind K; Müller J; Riebel B; Hummel W; Schomburg D
    J Mol Biol; 2005 Jun; 349(4):801-13. PubMed ID: 15896805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substrate-free structure of a monomeric NADP isocitrate dehydrogenase: an open conformation phylogenetic relationship of isocitrate dehydrogenase.
    Imabayashi F; Aich S; Prasad L; Delbaere LT
    Proteins; 2006 Apr; 63(1):100-12. PubMed ID: 16416443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional structure prediction of the NAD binding site of proton-pumping transhydrogenase from Escherichia coli.
    Fjellström O; Olausson T; Hu X; Källebring B; Ahmad S; Bragg PD; Rydström J
    Proteins; 1995 Feb; 21(2):91-104. PubMed ID: 7777492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A unique homodimeric NAD⁺-linked isocitrate dehydrogenase from the smallest autotrophic eukaryote Ostreococcus tauri.
    Tang WG; Song P; Cao ZY; Wang P; Zhu GP
    FASEB J; 2015 Jun; 29(6):2462-72. PubMed ID: 25724193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NADP(+)-specific isocitrate dehydrogenase from oleaginous yeast Yarrowia lipolytica CLIB122: biochemical characterization and coenzyme sites evaluation.
    Li X; Wang P; Ge Y; Wang W; Abbas A; Zhu G
    Appl Biochem Biotechnol; 2013 Sep; 171(2):403-16. PubMed ID: 23846800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conversion of the coenzyme specificity of isocitrate dehydrogenase by module replacement.
    Yaoi T; Miyazaki K; Oshima T; Komukai Y; Go M
    J Biochem; 1996 May; 119(5):1014-8. PubMed ID: 8797105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A highly specific monomeric isocitrate dehydrogenase from Corynebacterium glutamicum.
    Chen R; Yang H
    Arch Biochem Biophys; 2000 Nov; 383(2):238-45. PubMed ID: 11185559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli.
    Tanaka N; Nonaka T; Tanabe T; Yoshimoto T; Tsuru D; Mitsui Y
    Biochemistry; 1996 Jun; 35(24):7715-30. PubMed ID: 8672472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design.
    Woodyer R; van der Donk WA; Zhao H
    Biochemistry; 2003 Oct; 42(40):11604-14. PubMed ID: 14529270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure/function aspects of human 3beta-hydroxysteroid dehydrogenase.
    Thomas JL; Duax WL; Addlagatta A; Kacsoh B; Brandt SE; Norris WB
    Mol Cell Endocrinol; 2004 Feb; 215(1-2):73-82. PubMed ID: 15026177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the nicotinamide adenine dinucleotides (NAD
    Wang P; Chen X; Yang J; Pei Y; Bian M; Zhu G
    Biochimie; 2019 May; 160():148-155. PubMed ID: 30876971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Residues that influence coenzyme preference in the aldehyde dehydrogenases.
    González-Segura L; Riveros-Rosas H; Julián-Sánchez A; Muñoz-Clares RA
    Chem Biol Interact; 2015 Jun; 234():59-74. PubMed ID: 25601141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering.
    Scrutton NS; Berry A; Perham RN
    Nature; 1990 Jan; 343(6253):38-43. PubMed ID: 2296288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme-substrate complex and thermal stability.
    Karlström M; Stokke R; Steen IH; Birkeland NK; Ladenstein R
    J Mol Biol; 2005 Jan; 345(3):559-77. PubMed ID: 15581899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling substrate binding in Thermus thermophilus isopropylmalate dehydrogenase.
    Zhang T; Koshland DE
    Protein Sci; 1995 Jan; 4(1):84-92. PubMed ID: 7773180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior.
    Campbell E; Wheeldon IR; Banta S
    Biotechnol Bioeng; 2010 Dec; 107(5):763-74. PubMed ID: 20632378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of adenine binding domain peptides of the NADP+ active site within porcine heart NADP(+)-dependent isocitrate dehydrogenase.
    Sankaran B; Chavan AJ; Haley BE
    Biochemistry; 1996 Oct; 35(42):13501-10. PubMed ID: 8885829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutation of conserved residues in the NADP(H)-binding domain of the proton translocating pyridine nucleotide transhydrogenase of Escherichia coli.
    Bragg PD; Glavas NA; Hou C
    Arch Biochem Biophys; 1997 Feb; 338(1):57-66. PubMed ID: 9015388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. D175 discriminates between NADH and NADPH in the coenzyme binding site of Lactobacillus delbrueckii subsp. bulgaricus D-lactate dehydrogenase.
    Bernard N; Johnsen K; Holbrook JJ; Delcour J
    Biochem Biophys Res Commun; 1995 Mar; 208(3):895-900. PubMed ID: 7702618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.