These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 8639526)
61. Structural constraints in protein engineering--the coenzyme specificity of Escherichia coli isocitrate dehydrogenase. Chen R; Greer AF; Dean AM Eur J Biochem; 1997 Dec; 250(2):578-82. PubMed ID: 9428712 [TBL] [Abstract][Full Text] [Related]
62. Phosphorus-31 nuclear magnetic resonance studies on coenzyme binding and specificity in glyceraldehyde-3-phosphate dehydrogenase. Eyschen J; Vitoux B; Rahuel-Clermont S; Marraud M; Branlant G; Cung MT Biochemistry; 1996 May; 35(19):6064-72. PubMed ID: 8634248 [TBL] [Abstract][Full Text] [Related]
63. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. Xu X; Zhao J; Xu Z; Peng B; Huang Q; Arnold E; Ding J J Biol Chem; 2004 Aug; 279(32):33946-57. PubMed ID: 15173171 [TBL] [Abstract][Full Text] [Related]
64. Complete reversal of coenzyme specificity of isocitrate dehydrogenase from Haloferax volcanii. Rodríguez-Arnedo A; Camacho M; Llorca F; Bonete MJ Protein J; 2005 Jul; 24(5):259-66. PubMed ID: 16284723 [TBL] [Abstract][Full Text] [Related]
65. A Novel Type II NAD+-Specific Isocitrate Dehydrogenase from the Marine Bacterium Congregibacter litoralis KT71. Wu MC; Tian CQ; Cheng HM; Xu L; Wang P; Zhu GP PLoS One; 2015; 10(5):e0125229. PubMed ID: 25942017 [TBL] [Abstract][Full Text] [Related]
66. Evaluation by mutagenesis of the roles of His309, His315, and His319 in the coenzyme site of pig heart NADP-dependent isocitrate dehydrogenase. Huang YC; Colman RF Biochemistry; 2002 Apr; 41(17):5637-43. PubMed ID: 11969425 [TBL] [Abstract][Full Text] [Related]
68. Structure and engineering of L-arabinitol 4-dehydrogenase from Neurospora crassa. Bae B; Sullivan RP; Zhao H; Nair SK J Mol Biol; 2010 Sep; 402(1):230-40. PubMed ID: 20655316 [TBL] [Abstract][Full Text] [Related]
69. Converting NAD-specific inositol dehydrogenase to an efficient NADP-selective catalyst, with a surprising twist. Zheng H; Bertwistle D; Sanders DA; Palmer DR Biochemistry; 2013 Aug; 52(34):5876-83. PubMed ID: 23952058 [TBL] [Abstract][Full Text] [Related]
70. Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. Bocanegra JA; Scrutton NS; Perham RN Biochemistry; 1993 Mar; 32(11):2737-40. PubMed ID: 8457541 [TBL] [Abstract][Full Text] [Related]
71. Crystal structure of a truncated mutant of glucose-fructose oxidoreductase shows that an N-terminal arm controls tetramer formation. Lott JS; Halbig D; Baker HM; Hardman MJ; Sprenger GA; Baker EN J Mol Biol; 2000 Dec; 304(4):575-84. PubMed ID: 11099381 [TBL] [Abstract][Full Text] [Related]
72. Determinants of coenzyme specificity in glyceraldehyde-3-phosphate dehydrogenase: role of the acidic residue in the fingerprint region of the nucleotide binding fold. Clermont S; Corbier C; Mely Y; Gerard D; Wonacott A; Branlant G Biochemistry; 1993 Sep; 32(38):10178-84. PubMed ID: 8399144 [TBL] [Abstract][Full Text] [Related]
73. Determination of phosphorylation sites for NADP-specific isocitrate dehydrogenase from mycobacterium tuberculosis. Vinekar R; Ghosh I J Biomol Struct Dyn; 2009 Jun; 26(6):741-54. PubMed ID: 19385702 [TBL] [Abstract][Full Text] [Related]
74. Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase. Dean AM; Golding GB Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3104-9. PubMed ID: 9096353 [TBL] [Abstract][Full Text] [Related]
75. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H). Cui D; Zhang L; Jiang S; Yao Z; Gao B; Lin J; Yuan YA; Wei D FEBS J; 2015 Jun; 282(12):2339-51. PubMed ID: 25817922 [TBL] [Abstract][Full Text] [Related]
76. Interaction of bacterial glucose-6-phosphate dehydrogenase with triazine dyes: a study by means of affinity partitioning and kinetic analysis. Reuter R; Metz P; Lorenz G; Kopperschläger G Biomed Biochim Acta; 1990; 49(4):151-60. PubMed ID: 2403336 [TBL] [Abstract][Full Text] [Related]
77. Shifting the NAD/NADP preference in class 3 aldehyde dehydrogenase. Perozich J; Kuo I; Wang BC; Boesch JS; Lindahl R; Hempel J Eur J Biochem; 2000 Oct; 267(20):6197-203. PubMed ID: 11012673 [TBL] [Abstract][Full Text] [Related]
78. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Hoelsch K; Sührer I; Heusel M; Weuster-Botz D Appl Microbiol Biotechnol; 2013 Mar; 97(6):2473-81. PubMed ID: 22588502 [TBL] [Abstract][Full Text] [Related]
79. Role of residues in the adenosine binding site of NAD of the Ascaris suum malic enzyme. Aktas DF; Cook PF Biochim Biophys Acta; 2008 Dec; 1784(12):2059-64. PubMed ID: 18725329 [TBL] [Abstract][Full Text] [Related]
80. Apo and holo crystal structures of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans. Cobessi D; Tête-Favier F; Marchal S; Azza S; Branlant G; Aubry A J Mol Biol; 1999 Jul; 290(1):161-73. PubMed ID: 10388564 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]