These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
636 related articles for article (PubMed ID: 8639540)
1. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing. Mei R; Herschlag D Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540 [TBL] [Abstract][Full Text] [Related]
2. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme. Bevilacqua PC; Sugimoto N; Turner DH Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239 [TBL] [Abstract][Full Text] [Related]
3. A base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect. Karbstein K; Tang KH; Herschlag D RNA; 2004 Nov; 10(11):1730-9. PubMed ID: 15496521 [TBL] [Abstract][Full Text] [Related]
4. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity. Campbell TB; Cech TR Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205 [TBL] [Abstract][Full Text] [Related]
5. Kinetic characterization of the first step of the ribozyme-catalyzed trans excision-splicing reaction. Dotson PP; Sinha J; Testa SM FEBS J; 2008 Jun; 275(12):3110-22. PubMed ID: 18479464 [TBL] [Abstract][Full Text] [Related]
6. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans. Sargueil B; Tanner NK J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170 [TBL] [Abstract][Full Text] [Related]
7. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. Shan SO; Herschlag D Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151 [TBL] [Abstract][Full Text] [Related]
8. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization. Strobel SA; Cech TR Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575 [TBL] [Abstract][Full Text] [Related]
9. Effects of divalent metal ions on individual steps of the Tetrahymena ribozyme reaction. McConnell TS; Herschlag D; Cech TR Biochemistry; 1997 Jul; 36(27):8293-303. PubMed ID: 9204875 [TBL] [Abstract][Full Text] [Related]
10. A Pneumocystis carinii group I intron ribozyme that does not require 2' OH groups on its 5' exon mimic for binding to the catalytic core. Testa SM; Haidaris CG; Gigliotti F; Turner DH Biochemistry; 1997 Dec; 36(49):15303-14. PubMed ID: 9398259 [TBL] [Abstract][Full Text] [Related]
11. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis. Jabri E; Aigner S; Cech TR Biochemistry; 1997 Dec; 36(51):16345-54. PubMed ID: 9405070 [TBL] [Abstract][Full Text] [Related]
12. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme. Oe Y; Ikawa Y; Shiraishi H; Inoue T Biochem Biophys Res Commun; 2002 Mar; 291(5):1225-31. PubMed ID: 11883948 [TBL] [Abstract][Full Text] [Related]
13. A Pneumocystis carinii group I intron-derived ribozyme utilizes an endogenous guanosine as the first reaction step nucleophile in the trans excision-splicing reaction. Dotson PP; Sinha J; Testa SM Biochemistry; 2008 Apr; 47(16):4780-7. PubMed ID: 18363339 [TBL] [Abstract][Full Text] [Related]
14. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction. Oe Y; Ikawa Y; Shiraishi H; Inoue T Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885 [TBL] [Abstract][Full Text] [Related]
15. Conformational switches involved in orchestrating the successive steps of group I RNA splicing. Golden BL; Cech TR Biochemistry; 1996 Mar; 35(12):3754-63. PubMed ID: 8619996 [TBL] [Abstract][Full Text] [Related]
16. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme. Strauss-Soukup JK; Strobel SA J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738 [TBL] [Abstract][Full Text] [Related]
17. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu). Zaug AJ; Dávila-Aponte JA; Cech TR Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660 [TBL] [Abstract][Full Text] [Related]
18. Analysis of rate-determining conformational changes during self-splicing of the Tetrahymena intron. Emerick VL; Pan J; Woodson SA Biochemistry; 1996 Oct; 35(41):13469-77. PubMed ID: 8873616 [TBL] [Abstract][Full Text] [Related]
19. Requirements of a group I intron for reactions at the 3' splice site. van der Horst G; Inoue T J Mol Biol; 1993 Feb; 229(3):685-94. PubMed ID: 8433366 [TBL] [Abstract][Full Text] [Related]
20. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Herschlag D; Cech TR Biochemistry; 1990 Nov; 29(44):10159-71. PubMed ID: 2271645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]