BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 8639563)

  • 1. NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na+ pump.
    Pfenninger-Li XD; Albracht SP; van Belzen R; Dimroth P
    Biochemistry; 1996 May; 35(20):6233-42. PubMed ID: 8639563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Na(+)-translocating NADH:ubiquinone oxidoreductase from the marine bacterium Vibrio alginolyticus contains FAD but not FMN.
    Pfenninger-Li XD; Dimroth P
    FEBS Lett; 1995 Aug; 369(2-3):173-6. PubMed ID: 7649253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio alginolyticus--redox states of the FAD prosthetic group and mechanism of Ag+ inhibition.
    Steuber J; Krebs W; Dimroth P
    Eur J Biochem; 1997 Nov; 249(3):770-6. PubMed ID: 9395325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles.
    van Belzen R; Kotlyar AB; Moon N; Dunham WR; Albracht SP
    Biochemistry; 1997 Jan; 36(4):886-93. PubMed ID: 9020788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequencing and preliminary characterization of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio harveyi.
    Zhou W; Bertsova YV; Feng B; Tsatsos P; Verkhovskaya ML; Gennis RB; Bogachev AV; Barquera B
    Biochemistry; 1999 Dec; 38(49):16246-52. PubMed ID: 10587447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X- and W-band EPR and Q-band ENDOR studies of the flavin radical in the Na+ -translocating NADH:quinone oxidoreductase from Vibrio cholerae.
    Barquera B; Morgan JE; Lukoyanov D; Scholes CP; Gennis RB; Nilges MJ
    J Am Chem Soc; 2003 Jan; 125(1):265-75. PubMed ID: 12515529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-dependent steps in the redox reactions of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi.
    Bogachev AV; Bertsova YV; Barquera B; Verkhovsky MI
    Biochemistry; 2001 Jun; 40(24):7318-23. PubMed ID: 11401580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na(+) translocation by bacterial NADH:quinone oxidoreductases: an extension to the complex-I family of primary redox pumps.
    Steuber J
    Biochim Biophys Acta; 2001 May; 1505(1):45-56. PubMed ID: 11248188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of nitric oxide on electron transport complexes.
    Welter R; Yu L; Yu CA
    Arch Biochem Biophys; 1996 Jul; 331(1):9-14. PubMed ID: 8660677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex.
    Schulte U; Haupt V; Abelmann A; Fecke W; Brors B; Rasmussen T; Friedrich T; Weiss H
    J Mol Biol; 1999 Sep; 292(3):569-80. PubMed ID: 10497022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+ translocation by the NADH:ubiquinone oxidoreductase (complex I) from Klebsiella pneumoniae.
    Krebs W; Steuber J; Gemperli AC; Dimroth P
    Mol Microbiol; 1999 Aug; 33(3):590-8. PubMed ID: 10417649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the spectral changes during reduction of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi.
    Bogachev AV; Bertsova YV; Ruuge EK; Wikström M; Verkhovsky MI
    Biochim Biophys Acta; 2002 Dec; 1556(2-3):113-20. PubMed ID: 12460668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na(+)-translocating NADH-quinone reductase of marine and halophilic bacteria.
    Unemoto T; Hayashi M
    J Bioenerg Biomembr; 1993 Aug; 25(4):385-91. PubMed ID: 8226720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio alginolyticus by reactive oxygen species.
    Steuber J; Rufibach M; Fritz G; Neese F; Dimroth P
    Eur J Biochem; 2002 Feb; 269(4):1287-92. PubMed ID: 11856363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential.
    Shen AL; Kasper CB
    Biochemistry; 1996 Jul; 35(29):9451-9. PubMed ID: 8755724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilization and reconstitution of the Na+-motive NADH oxidase activity from the marine bacterium Vibrio alginolyticus.
    Tokuda H
    FEBS Lett; 1984 Oct; 176(1):125-8. PubMed ID: 6092131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.