These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 8639611)

  • 1. Mechanism of fluorescence and conformational changes of the sarcoplasmic calcium binding protein of the sand worm Nereis diversicolor upon Ca2+ or Mg2+ binding.
    Sillen A; Verheyden S; Delfosse L; Braem T; Robben J; Volckaert G; Engelborghs Y
    Biophys J; 2003 Sep; 85(3):1882-93. PubMed ID: 12944301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for enzyme I inhibition by α-ketoglutarate.
    Venditti V; Ghirlando R; Clore GM
    ACS Chem Biol; 2013; 8(6):1232-40. PubMed ID: 23506042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimolecular quenching of tryptophan fluorescence in a membrane protein: Evolution of local solvation and environment during folding into a bilayer.
    Asamoto DK; Kozachenko IA; López-Peña I; Kim JE
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 260():119919. PubMed ID: 34004426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan Fluorescence Yields and Lifetimes as a Probe of Conformational Changes in Human Glucokinase.
    Zelent B; Bialas C; Gryczynski I; Chen P; Chib R; Lewerissa K; Corradini MG; Ludescher RD; Vanderkooi JM; Matschinsky FM
    J Fluoresc; 2017 Sep; 27(5):1621-1631. PubMed ID: 28432632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan properties in fluorescence and functional stability of plasminogen activator inhibitor 1.
    Verheyden S; Sillen A; Gils A; Declerck PJ; Engelborghs Y
    Biophys J; 2003 Jul; 85(1):501-10. PubMed ID: 12829505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan-based fluorophores for studying protein conformational changes.
    Talukder P; Chen S; Liu CT; Baldwin EA; Benkovic SJ; Hecht SM
    Bioorg Med Chem; 2014 Nov; 22(21):5924-34. PubMed ID: 25284250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of allosteric influence of Escherichia coli phosphofructokinase by frequency domain fluorescence.
    Pham AS; Reinhart GD
    Biophys J; 2003 Jul; 85(1):656-66. PubMed ID: 12829519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Excitation of the
    Torrez M; Brajanovska A; Slowinska K
    ACS Omega; 2024 Jul; 9(27):29848-29856. PubMed ID: 39005791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insight into the PTS sugar transporter EIIC.
    McCoy JG; Levin EJ; Zhou M
    Biochim Biophys Acta; 2015 Mar; 1850(3):577-85. PubMed ID: 24657490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of the substrate-binding site in the homodimeric mannitol transporter, EIImtl, of Escherichia coli.
    Opacić M; Vos EP; Hesp BH; Broos J
    J Biol Chem; 2010 Aug; 285(33):25324-31. PubMed ID: 20522557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometry and substrate affinity of the mannitol transporter, EnzymeIImtl, from Escherichia coli.
    Veldhuis G; Broos J; Poolman B; Scheek RM
    Biophys J; 2005 Jul; 89(1):201-10. PubMed ID: 15879478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient biosynthetic incorporation of tryptophan and indole analogs in an integral membrane protein.
    Broos J; Gabellieri E; Biemans-Oldehinkel E; Strambini GB
    Protein Sci; 2003 Sep; 12(9):1991-2000. PubMed ID: 12930998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system.
    Dijkstra DS; Broos J; Lolkema JS; Enequist H; Minke W; Robillard GT
    Biochemistry; 1996 May; 35(21):6628-34. PubMed ID: 8639611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the cytoplasmic loop between putative helices II and III of the mannitol permease of Escherichia coli: a tryptophan and 5-fluorotryptophan spectroscopy study.
    Vos EP; Bokhove M; Hesp BH; Broos J
    Biochemistry; 2009 Jun; 48(23):5284-90. PubMed ID: 19402710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between the oligomerization state and the transport and phosphorylation function of the Escherichia coli mannitol transport protein: interaction between mannitol-specific enzyme II monomers studied by complementation of inactive site-directed mutants.
    Boer H; ten Hoeve-Duurkens RH; Robillard GT
    Biochemistry; 1996 Oct; 35(39):12901-8. PubMed ID: 8841134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of single-tryptophan mutants of histidine-containing phosphocarrier protein: evidence for local rearrangements during folding from high concentrations of denaturant.
    Azuaga AI; Canet D; Smeenk G; Berends R; Titgemeijer F; Duurkens R; Mateo PL; Scheek RM; Robillard GT; Dobson CM; van Nuland NA
    Biochemistry; 2003 May; 42(17):4883-95. PubMed ID: 12718529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional domains of the mannitol-specific enzyme II of the E. coli phosphoenolpyruvate-dependent phosphotransferase system.
    Jacobson GR; Stephan MM
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):25-34. PubMed ID: 2517400
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanistic aspects of energy coupling in the Escherichia coli mannitol phosphotransferase system: a domain approach.
    Robillard GT; Meijberg W; Schuurman-Wolters G
    Biochem Soc Trans; 1998 Aug; 26(3):532-8. PubMed ID: 9765909
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.