These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 8639630)
21. Co-operative interactions during protein folding. Horovitz A; Fersht AR J Mol Biol; 1992 Apr; 224(3):733-40. PubMed ID: 1569552 [TBL] [Abstract][Full Text] [Related]
22. Thermodynamics of transient conformations in the folding pathway of barnase: reorganization of the folding intermediate at low pH. Oliveberg M; Fersht AR Biochemistry; 1996 Feb; 35(8):2738-49. PubMed ID: 8611580 [TBL] [Abstract][Full Text] [Related]
23. A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: implications for the initiation of protein folding. Arcus VL; Vuilleumier S; Freund SM; Bycroft M; Fersht AR J Mol Biol; 1995 Nov; 254(2):305-21. PubMed ID: 7490750 [TBL] [Abstract][Full Text] [Related]
24. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants. Ionescu RM; Eftink MR Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404 [TBL] [Abstract][Full Text] [Related]
25. Stability and folding of the protein complexes of barnase. Neira JL; Vázquez E; Fersht AR Eur J Biochem; 2000 May; 267(10):2859-70. PubMed ID: 10806383 [TBL] [Abstract][Full Text] [Related]
26. The folding of an enzyme. IV. Structure of an intermediate in the refolding of barnase analysed by a protein engineering procedure. Matouschek A; Serrano L; Fersht AR J Mol Biol; 1992 Apr; 224(3):819-35. PubMed ID: 1569559 [TBL] [Abstract][Full Text] [Related]
27. Application of physical organic chemistry to engineered mutants of proteins: Hammond postulate behavior in the transition state of protein folding. Matouschek A; Fersht AR Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7814-8. PubMed ID: 8356089 [TBL] [Abstract][Full Text] [Related]
28. Protein stability as a function of denaturant concentration: the thermal stability of barnase in the presence of urea. Johnson CM; Fersht AR Biochemistry; 1995 May; 34(20):6795-804. PubMed ID: 7756311 [TBL] [Abstract][Full Text] [Related]
29. Lack of definable nucleation sites in the rate-limiting transition state of barnase under native conditions. Chu RA; Bai Y J Mol Biol; 2002 Jan; 315(4):759-70. PubMed ID: 11812145 [TBL] [Abstract][Full Text] [Related]
30. Molecular dynamics simulation of the unfolding of barnase: characterization of the major intermediate. Li A; Daggett V J Mol Biol; 1998 Jan; 275(4):677-94. PubMed ID: 9466940 [TBL] [Abstract][Full Text] [Related]
31. Experimental and theoretical study of electrostatic effects on the isoelectric pH and the pKa of the catalytic residue His-102 of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase). Bastyns K; Froeyen M; Diaz JF; Volckaert G; Engelborghs Y Proteins; 1996 Mar; 24(3):370-8. PubMed ID: 8778784 [TBL] [Abstract][Full Text] [Related]
32. Strength and co-operativity of contributions of surface salt bridges to protein stability. Horovitz A; Serrano L; Avron B; Bycroft M; Fersht AR J Mol Biol; 1990 Dec; 216(4):1031-44. PubMed ID: 2266554 [TBL] [Abstract][Full Text] [Related]
33. Thermodynamic analysis of an antagonistic folding-unfolding equilibrium between two protein domains. Cutler TA; Loh SN J Mol Biol; 2007 Aug; 371(2):308-16. PubMed ID: 17572441 [TBL] [Abstract][Full Text] [Related]
34. Conformational states bound by the molecular chaperones GroEL and secB: a hidden unfolding (annealing) activity. Zahn R; Perrett S; Fersht AR J Mol Biol; 1996 Aug; 261(1):43-61. PubMed ID: 8760501 [TBL] [Abstract][Full Text] [Related]
35. Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities. Buckle AM; Cramer P; Fersht AR Biochemistry; 1996 Apr; 35(14):4298-305. PubMed ID: 8605178 [TBL] [Abstract][Full Text] [Related]
36. Insertion in barnase of a loop sequence from ribonuclease T1. Investigating sequence and structure alignments by protein engineering. Vuilleumier S; Fersht AR Eur J Biochem; 1994 May; 221(3):1003-12. PubMed ID: 8181455 [TBL] [Abstract][Full Text] [Related]
37. Structure of the transition state in the folding process of human procarboxypeptidase A2 activation domain. Villegas V; Martínez JC; Avilés FX; Serrano L J Mol Biol; 1998 Nov; 283(5):1027-36. PubMed ID: 9799641 [TBL] [Abstract][Full Text] [Related]
38. Movement of the intermediate and rate determining transition state of barnase on the energy landscape with changing temperature. Dalby PA; Oliveberg M; Fersht AR Biochemistry; 1998 Mar; 37(13):4674-9. PubMed ID: 9521788 [TBL] [Abstract][Full Text] [Related]
39. Domain behavior during the folding of a thermostable phosphoglycerate kinase. Parker MJ; Spencer J; Jackson GS; Burston SG; Hosszu LL; Craven CJ; Waltho JP; Clarke AR Biochemistry; 1996 Dec; 35(49):15740-52. PubMed ID: 8961937 [TBL] [Abstract][Full Text] [Related]
40. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. Serrano L; Matouschek A; Fersht AR J Mol Biol; 1992 Apr; 224(3):805-18. PubMed ID: 1569558 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]