These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 8639661)
1. Direct determination of the membrane affinities of individual amino acids. Thorgeirsson TE; Russell CJ; King DS; Shin YK Biochemistry; 1996 Feb; 35(6):1803-9. PubMed ID: 8639661 [TBL] [Abstract][Full Text] [Related]
2. Temperature dependence of polypeptide partitioning between water and phospholipid bilayers. Russell CJ; Thorgeirsson TE; Shin YK Biochemistry; 1996 Jul; 35(29):9526-32. PubMed ID: 8755733 [TBL] [Abstract][Full Text] [Related]
3. The membrane affinities of the aliphatic amino acid side chains in an alpha-helical context are independent of membrane immersion depth. Russell CJ; Thorgeirsson TE; Shin YK Biochemistry; 1999 Jan; 38(1):337-46. PubMed ID: 9890915 [TBL] [Abstract][Full Text] [Related]
4. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. Wimley WC; Creamer TP; White SH Biochemistry; 1996 Apr; 35(16):5109-24. PubMed ID: 8611495 [TBL] [Abstract][Full Text] [Related]
5. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related]
6. Cytochrome c-induced increase of motionally restricted lipid in reconstituted cytochrome c oxidase membranes, revealed by spin-label ESR spectroscopy. Kleinschmidt JH; Powell GL; Marsh D Biochemistry; 1998 Aug; 37(33):11579-85. PubMed ID: 9708994 [TBL] [Abstract][Full Text] [Related]
7. Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids. Páli T; Kóta Z Methods Mol Biol; 2013; 974():297-328. PubMed ID: 23404282 [TBL] [Abstract][Full Text] [Related]
8. A limiting law for the electrostatics of the binding of polypeptides to phospholipid bilayers. Thorgeirsson TE; Yu YG; Shin YK Biochemistry; 1995 Apr; 34(16):5518-22. PubMed ID: 7727411 [TBL] [Abstract][Full Text] [Related]
9. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study. Roux M; Beswick V; Coïc YM; Huynh-Dinh T; Sanson A; Neumann JM Biophys J; 2000 Nov; 79(5):2624-31. PubMed ID: 11053135 [TBL] [Abstract][Full Text] [Related]
10. A hydrophobicity scale for the lipid bilayer barrier domain from peptide permeabilities: nonadditivities in residue contributions. Mayer PT; Xiang TX; Niemi R; Anderson BD Biochemistry; 2003 Feb; 42(6):1624-36. PubMed ID: 12578376 [TBL] [Abstract][Full Text] [Related]
11. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules. Cao Y; Xiang TX; Anderson BD Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031 [TBL] [Abstract][Full Text] [Related]
12. Adaptation of a membrane-active peptide to heterogeneous environment. I. Structural plasticity of the peptide. Polyansky AA; Volynsky PE; Arseniev AS; Efremov RG J Phys Chem B; 2009 Jan; 113(4):1107-19. PubMed ID: 19125640 [TBL] [Abstract][Full Text] [Related]
13. Mutational analysis of the Saccharomyces cerevisiae cytochrome c oxidase assembly protein Cox11p. Banting GS; Glerum DM Eukaryot Cell; 2006 Mar; 5(3):568-78. PubMed ID: 16524911 [TBL] [Abstract][Full Text] [Related]
14. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers. Plasencia I; Rivas L; Keough KM; Marsh D; Pérez-Gil J Biochem J; 2004 Jan; 377(Pt 1):183-93. PubMed ID: 14514353 [TBL] [Abstract][Full Text] [Related]
15. Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment. MacCallum JL; Bennett WF; Tieleman DP J Gen Physiol; 2007 May; 129(5):371-7. PubMed ID: 17438118 [No Abstract] [Full Text] [Related]
16. Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids. Lewis JR; Cafiso DS Biochemistry; 1999 May; 38(18):5932-8. PubMed ID: 10231547 [TBL] [Abstract][Full Text] [Related]
17. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
18. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation. Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194 [TBL] [Abstract][Full Text] [Related]
19. An experiment-based algorithm for predicting the partitioning of unfolded peptides into phosphatidylcholine bilayer interfaces. Hristova K; White SH Biochemistry; 2005 Sep; 44(37):12614-9. PubMed ID: 16156674 [TBL] [Abstract][Full Text] [Related]
20. A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation. Efremov RG; Nolde DE; Vergoten G; Arseniev AS Biophys J; 1999 May; 76(5):2448-59. PubMed ID: 10233062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]