BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8639661)

  • 1. Direct determination of the membrane affinities of individual amino acids.
    Thorgeirsson TE; Russell CJ; King DS; Shin YK
    Biochemistry; 1996 Feb; 35(6):1803-9. PubMed ID: 8639661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of polypeptide partitioning between water and phospholipid bilayers.
    Russell CJ; Thorgeirsson TE; Shin YK
    Biochemistry; 1996 Jul; 35(29):9526-32. PubMed ID: 8755733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The membrane affinities of the aliphatic amino acid side chains in an alpha-helical context are independent of membrane immersion depth.
    Russell CJ; Thorgeirsson TE; Shin YK
    Biochemistry; 1999 Jan; 38(1):337-46. PubMed ID: 9890915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides.
    Wimley WC; Creamer TP; White SH
    Biochemistry; 1996 Apr; 35(16):5109-24. PubMed ID: 8611495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface.
    Voglino L; McIntosh TJ; Simon SA
    Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome c-induced increase of motionally restricted lipid in reconstituted cytochrome c oxidase membranes, revealed by spin-label ESR spectroscopy.
    Kleinschmidt JH; Powell GL; Marsh D
    Biochemistry; 1998 Aug; 37(33):11579-85. PubMed ID: 9708994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids.
    Páli T; Kóta Z
    Methods Mol Biol; 2013; 974():297-328. PubMed ID: 23404282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A limiting law for the electrostatics of the binding of polypeptides to phospholipid bilayers.
    Thorgeirsson TE; Yu YG; Shin YK
    Biochemistry; 1995 Apr; 34(16):5518-22. PubMed ID: 7727411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.
    Roux M; Beswick V; Coïc YM; Huynh-Dinh T; Sanson A; Neumann JM
    Biophys J; 2000 Nov; 79(5):2624-31. PubMed ID: 11053135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hydrophobicity scale for the lipid bilayer barrier domain from peptide permeabilities: nonadditivities in residue contributions.
    Mayer PT; Xiang TX; Niemi R; Anderson BD
    Biochemistry; 2003 Feb; 42(6):1624-36. PubMed ID: 12578376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.
    Cao Y; Xiang TX; Anderson BD
    Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of a membrane-active peptide to heterogeneous environment. I. Structural plasticity of the peptide.
    Polyansky AA; Volynsky PE; Arseniev AS; Efremov RG
    J Phys Chem B; 2009 Jan; 113(4):1107-19. PubMed ID: 19125640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the Saccharomyces cerevisiae cytochrome c oxidase assembly protein Cox11p.
    Banting GS; Glerum DM
    Eukaryot Cell; 2006 Mar; 5(3):568-78. PubMed ID: 16524911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers.
    Plasencia I; Rivas L; Keough KM; Marsh D; Pérez-Gil J
    Biochem J; 2004 Jan; 377(Pt 1):183-93. PubMed ID: 14514353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment.
    MacCallum JL; Bennett WF; Tieleman DP
    J Gen Physiol; 2007 May; 129(5):371-7. PubMed ID: 17438118
    [No Abstract]   [Full Text] [Related]  

  • 16. Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids.
    Lewis JR; Cafiso DS
    Biochemistry; 1999 May; 38(18):5932-8. PubMed ID: 10231547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation.
    Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ
    Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experiment-based algorithm for predicting the partitioning of unfolded peptides into phosphatidylcholine bilayer interfaces.
    Hristova K; White SH
    Biochemistry; 2005 Sep; 44(37):12614-9. PubMed ID: 16156674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation.
    Efremov RG; Nolde DE; Vergoten G; Arseniev AS
    Biophys J; 1999 May; 76(5):2448-59. PubMed ID: 10233062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.