BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 8639681)

  • 1. Catalysis of oxidative protein folding by mutants of protein disulfide isomerase with a single active-site cysteine.
    Walker KW; Lyles MM; Gilbert HF
    Biochemistry; 1996 Feb; 35(6):1972-80. PubMed ID: 8639681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in the thioredoxin sites of protein disulfide isomerase reveal functional nonequivalence of the N- and C-terminal domains.
    Lyles MM; Gilbert HF
    J Biol Chem; 1994 Dec; 269(49):30946-52. PubMed ID: 7983029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pro to His mutation in active site of thioredoxin increases its disulfide-isomerase activity 10-fold. New refolding systems for reduced or randomly oxidized ribonuclease.
    Lundström J; Krause G; Holmgren A
    J Biol Chem; 1992 May; 267(13):9047-52. PubMed ID: 1577742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning and escape during protein-disulfide isomerase-assisted protein folding.
    Walker KW; Gilbert HF
    J Biol Chem; 1997 Apr; 272(14):8845-8. PubMed ID: 9082998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved residues flanking the thiol/disulfide centers of protein disulfide isomerase are not essential for catalysis of thiol/disulfide exchange.
    Lu X; Gilbert HF; Harper JW
    Biochemistry; 1992 May; 31(17):4205-10. PubMed ID: 1567868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction-reoxidation cycles contribute to catalysis of disulfide isomerization by protein-disulfide isomerase.
    Schwaller M; Wilkinson B; Gilbert HF
    J Biol Chem; 2003 Feb; 278(9):7154-9. PubMed ID: 12486139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the thiol/disulfide centers and peptide binding site in the chaperone and anti-chaperone activities of protein disulfide isomerase.
    Puig A; Lyles MM; Noiva R; Gilbert HF
    J Biol Chem; 1994 Jul; 269(29):19128-35. PubMed ID: 7913469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glutaredoxin and protein disulfide isomerase on the glutathione-dependent folding of ribonuclease A.
    Ruoppolo M; Lundström-Ljung J; Talamo F; Pucci P; Marino G
    Biochemistry; 1997 Oct; 36(40):12259-67. PubMed ID: 9315864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis of thiol/disulfide exchange. Glutaredoxin 1 and protein-disulfide isomerase use different mechanisms to enhance oxidase and reductase activities.
    Xiao R; Lundström-Ljung J; Holmgren A; Gilbert HF
    J Biol Chem; 2005 Jun; 280(22):21099-106. PubMed ID: 15814611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The essential function of protein-disulfide isomerase is to unscramble non-native disulfide bonds.
    Laboissiere MC; Sturley SL; Raines RT
    J Biol Chem; 1995 Nov; 270(47):28006-9. PubMed ID: 7499282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutaredoxin accelerates glutathione-dependent folding of reduced ribonuclease A together with protein disulfide-isomerase.
    Lundström-Ljung J; Holmgren A
    J Biol Chem; 1995 Apr; 270(14):7822-8. PubMed ID: 7713872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the active site cysteine residues of the thioredoxin-like domains of protein disulfide isomerase.
    Darby NJ; Creighton TE
    Biochemistry; 1995 Dec; 34(51):16770-80. PubMed ID: 8527452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 21-kDa C-terminal fragment of protein-disulfide isomerase has isomerase, chaperone, and anti-chaperone activities.
    Puig A; Primm TP; Surendran R; Lee JC; Ballard KD; Orkiszewski RS; Makarov V; Gilbert HF
    J Biol Chem; 1997 Dec; 272(52):32988-94. PubMed ID: 9407079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis of protein disulfide bond isomerization in a homogeneous substrate.
    Kersteen EA; Barrows SR; Raines RT
    Biochemistry; 2005 Sep; 44(36):12168-78. PubMed ID: 16142915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase.
    Ruoppolo M; Freedman RB; Pucci P; Marino G
    Biochemistry; 1996 Oct; 35(42):13636-46. PubMed ID: 8885843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic catalysis of disulfide formation.
    Noiva R
    Protein Expr Purif; 1994 Feb; 5(1):1-13. PubMed ID: 7909462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation.
    Kulp MS; Frickel EM; Ellgaard L; Weissman JS
    J Biol Chem; 2006 Jan; 281(2):876-84. PubMed ID: 16368681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient catalysis of disulfide formation during protein folding with a single active-site cysteine.
    Wunderlich M; Otto A; Maskos K; Mücke M; Seckler R; Glockshuber R
    J Mol Biol; 1995 Mar; 247(1):28-33. PubMed ID: 7897659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural disulfide of yeast protein-disulfide isomerase destabilizes the active site disulfide of the N-terminal thioredoxin domain.
    Wilkinson B; Xiao R; Gilbert HF
    J Biol Chem; 2005 Mar; 280(12):11483-7. PubMed ID: 15649885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refolding by disulfide isomerization: the mixed disulfide between ribonuclease T1 and glutathione as a model refolding substrate.
    Ruoppolo M; Freedman RB
    Biochemistry; 1995 Jul; 34(29):9380-8. PubMed ID: 7626608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.