BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 8639685)

  • 41. Luminescence studies of perturbation of tryptophan residues of tubulin in the complexes of tubulin with colchicine and colchicine analogues.
    Sardar PS; Maity SS; Das L; Ghosh S
    Biochemistry; 2007 Dec; 46(50):14544-56. PubMed ID: 18041823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 1. Kinetic evidence for cooperative effects associated with the binding of inorganic phosphate and the 5'-phosphate moiety of the cofactor.
    Murray TA; Swenson RP
    Biochemistry; 2003 Mar; 42(8):2307-16. PubMed ID: 12600198
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The B-ring substituent at C-7 of colchicine and the alpha-C-terminus of tubulin communicate through the "tail-body" interaction.
    Chakraborty S; Gupta S; Sarkar T; Poddar A; Pena J; Solana R; Tarazona R; Bhattacharyya B
    Proteins; 2004 Nov; 57(3):602-9. PubMed ID: 15382227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter.
    Tang L; Lutje Spelberg JH; Fraaije MW; Janssen DB
    Biochemistry; 2003 May; 42(18):5378-86. PubMed ID: 12731879
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition of microtubules and cell cycle arrest by a new 1-deaza-7,8-dihydropteridine antitumor drug, CI 980, and by its chiral isomer, NSC 613863.
    de Ines C; Leynadier D; Barasoain I; Peyrot V; Garcia P; Briand C; Rener GA; Temple C
    Cancer Res; 1994 Jan; 54(1):75-84. PubMed ID: 8261466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interaction of propafenone enantiomers with human alpha 1-acid glycoprotein.
    Oravcová J; Lindner W; Szalay P; Bohácik L; Trnovec T
    Chirality; 1991; 3(1):30-4. PubMed ID: 2039682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of tubulin with octyl glucoside and deoxycholate. 2. Protein conformation, binding of colchicine ligands, and microtubule assembly.
    Andreu JM; de la Torre J; Carrascosa JL
    Biochemistry; 1986 Sep; 25(18):5230-9. PubMed ID: 3768343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: kinetic characterization of its interactions with beta-lactams using electrospray mass spectrometry.
    Lu WP; Sun Y; Bauer MD; Paule S; Koenigs PM; Kraft WG
    Biochemistry; 1999 May; 38(20):6537-46. PubMed ID: 10350472
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reversible inhibition of microtubules and cell growth by the bicyclic colchicine analogue MTC.
    Díez JC; Avila J; Nieto JM; Andreu JM
    Cell Motil Cytoskeleton; 1987; 7(2):178-86. PubMed ID: 3581187
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of the B-ring of colchicine in the stability of the colchicine-tubulin complex.
    Banerjee A; Barnes LD; Luduena RF
    Biochim Biophys Acta; 1987 Jun; 913(2):138-44. PubMed ID: 3593734
    [TBL] [Abstract][Full Text] [Related]  

  • 51. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Association of thiocolchicine with tubulin.
    Chabin RM; Hastie SB
    Biochem Biophys Res Commun; 1989 Jun; 161(2):544-50. PubMed ID: 2735908
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NBD-isocolcemid-tubulin interaction: a novel one-step reaction involving no conformational adjustment of reactants.
    Sengupta S; Banerjee S; Chakrabarti G; Mahapatra PK; Roy S; Bhattacharyya B
    Biochemistry; 2000 Mar; 39(9):2227-34. PubMed ID: 10694388
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrophobic core substitutions in calbindin D9k: effects on Ca2+ binding and dissociation.
    Kragelund BB; Jönsson M; Bifulco G; Chazin WJ; Nilsson H; Finn BE; Linse S
    Biochemistry; 1998 Jun; 37(25):8926-37. PubMed ID: 9636034
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of tubulin with bifunctional colchicine analogues: an equilibrium study.
    Andreu JM; Gorbunoff MJ; Lee JC; Timasheff SN
    Biochemistry; 1984 Apr; 23(8):1742-52. PubMed ID: 6722122
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of dolastatin 10 with tubulin: induction of aggregation and binding and dissociation reactions.
    Bai R; Taylor GF; Schmidt JM; Williams MD; Kepler JA; Pettit GR; Hamel E
    Mol Pharmacol; 1995 May; 47(5):965-76. PubMed ID: 7746283
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of desacetamidocolchicine, a fast binding analogue of colchicine with isotypically pure tubulin dimers alpha beta II, alpha beta III, and alpha beta IV.
    Banerjee A; D'Hoore A; Engelborghs Y
    J Biol Chem; 1994 Apr; 269(14):10324-9. PubMed ID: 8144613
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Colchicine binding to bovine anterior pituitary slices and inhibition of growth-hormone release.
    Sheterline P; Schofield JG; Mira F
    Biochem J; 1975 Jun; 148(3):453-9. PubMed ID: 1200986
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stopped-flow kinetic investigations of conformational changes of pig kidney Na+,K+-ATPase.
    Kane DJ; Fendler K; Grell E; Bamberg E; Taniguchi K; Froehlich JP; Clarke RJ
    Biochemistry; 1997 Oct; 36(43):13406-20. PubMed ID: 9341234
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular enzymology of the EcoRV DNA-(Adenine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA.
    Gowher H; Jeltsch A
    J Mol Biol; 2000 Oct; 303(1):93-110. PubMed ID: 11021972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.