These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. A comparison of leaf thionin sequences of barley cultivars and wild barley species. Bunge S; Wolters J; Apel K Mol Gen Genet; 1992 Feb; 231(3):460-8. PubMed ID: 1371580 [TBL] [Abstract][Full Text] [Related]
43. Structural features important for the RNA chaperone activity of zinc finger-containing glycine-rich RNA-binding proteins from wheat (Triticum avestivum) and rice (Oryza sativa). Xu T; Han JH; Kang H Phytochemistry; 2013 Oct; 94():28-35. PubMed ID: 23787154 [TBL] [Abstract][Full Text] [Related]
44. Sequence of a complete murine cDNA reflecting an S phase-prevalent transcript encoding a protein with two types of nucleic acid binding motifs. Schmidt G; Werner D Biochim Biophys Acta; 1993 Nov; 1216(2):317-20. PubMed ID: 8241277 [TBL] [Abstract][Full Text] [Related]
45. A cDNA clone for a pathogenesis-related protein 1 from barley. Muradov A; Petrasovits L; Davidson A; Scott KJ Plant Mol Biol; 1993 Oct; 23(2):439-42. PubMed ID: 8219079 [TBL] [Abstract][Full Text] [Related]
46. Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Connor JH; Weiser DC; Li S; Hallenbeck JM; Shenolikar S Mol Cell Biol; 2001 Oct; 21(20):6841-50. PubMed ID: 11564868 [TBL] [Abstract][Full Text] [Related]
47. RNA- and single-stranded DNA-binding (SSB) proteins expressed during Drosophila melanogaster oogenesis: a homolog of bacterial and eukaryotic mitochondrial SSBs. Stroumbakis ND; Li Z; Tolias PP Gene; 1994 Jun; 143(2):171-7. PubMed ID: 8206370 [TBL] [Abstract][Full Text] [Related]
48. Molecular analysis of the barley ( Hordeum vulgare L.) gene encoding the protein kinase PKABA1 capable of suppressing gibberellin action in aleurone layers. Yamauchi D; Zentella R; Ho TH Planta; 2002 Jun; 215(2):319-26. PubMed ID: 12029482 [TBL] [Abstract][Full Text] [Related]
49. Identification and characterization of novel senescence-associated genes from barley (Hordeum vulgare) primary leaves. Ay N; Clauss K; Barth O; Humbeck K Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():121-35. PubMed ID: 18721317 [TBL] [Abstract][Full Text] [Related]
50. Characterization of the nucleic acid-binding activities of the isolated amino-terminal head domain of the intermediate filament protein vimentin reveals its close relationship to the DNA-binding regions of some prokaryotic single-stranded DNA-binding proteins. Traub P; Mothes E; Shoeman R; Kühn S; Scherbarth A J Mol Biol; 1992 Nov; 228(1):41-57. PubMed ID: 1447793 [TBL] [Abstract][Full Text] [Related]
51. A cathepsin B-like cysteine protease gene from Hordeum vulgare (gene CatB) induced by GA in aleurone cells is under circadian control in leaves. Martínez M; Rubio-Somoza I; Carbonero P; Díaz I J Exp Bot; 2003 Mar; 54(384):951-9. PubMed ID: 12598566 [TBL] [Abstract][Full Text] [Related]
53. Molecular cloning and characterization of maize ZmMEK1, a protein kinase with a catalytic domain homologous to mitogen- and stress-activated protein kinase kinases. Hardin SC; Wolniak SM Planta; 1998 Nov; 206(4):577-84. PubMed ID: 9821688 [TBL] [Abstract][Full Text] [Related]
54. Barley (Hordeum vulgare L.) inositol monophosphatase: gene structure and enzyme characteristics. Fu J; Peterson K; Guttieri M; Souza E; Raboy V Plant Mol Biol; 2008 Aug; 67(6):629-42. PubMed ID: 18493722 [TBL] [Abstract][Full Text] [Related]
56. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Jung J; Won SY; Suh SC; Kim H; Wing R; Jeong Y; Hwang I; Kim M Planta; 2007 Feb; 225(3):575-88. PubMed ID: 16937017 [TBL] [Abstract][Full Text] [Related]
57. Molecular cloning and characterization of a novel low temperature-induced gene, blti2, from barley (Hordeum vulgare L.). Bahn SC; Bae MS; Park YB; Oh SI; Jeung JU; Bae JM; Chung YS; Shin JS Biochim Biophys Acta; 2001 Dec; 1522(2):134-7. PubMed ID: 11750066 [TBL] [Abstract][Full Text] [Related]
58. Nucleic acid binding property of the gene products of rice stripe virus. Liang D; Ma X; Qu Z; Hull R Virus Genes; 2005 Oct; 31(2):203-9. PubMed ID: 16025246 [TBL] [Abstract][Full Text] [Related]
59. Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function. Khan F; Daniëls MA; Folkers GE; Boelens R; Saqlan Naqvi SM; van Ingen H Nucleic Acids Res; 2014 Jul; 42(13):8705-18. PubMed ID: 24957607 [TBL] [Abstract][Full Text] [Related]
60. Isolation of a novel RNA-binding protein and its association with a large ribonucleoprotein particle present in the nucleoplasm of tobacco cells. Hanano S; Sugita M; Sugiura M Plant Mol Biol; 1996 Apr; 31(1):57-68. PubMed ID: 8704159 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]