These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8640583)

  • 21. Predicting the biodegradation products of perfluorinated chemicals using CATABOL.
    Dimitrov S; Kamenska V; Walker JD; Windle W; Purdy R; Lewis M; Mekenyan O
    SAR QSAR Environ Res; 2004 Feb; 15(1):69-82. PubMed ID: 15113070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent developments in broadly applicable structure-biodegradability relationships.
    Jaworska JS; Boethling RS; Howard PH
    Environ Toxicol Chem; 2003 Aug; 22(8):1710-23. PubMed ID: 12924572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation.
    Penny C; Vuilleumier S; Bringel F
    FEMS Microbiol Ecol; 2010 Nov; 74(2):257-75. PubMed ID: 20695893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The environmental fate of organic pollutants through the global microbial metabolism.
    Gómez MJ; Pazos F; Guijarro FJ; de Lorenzo V; Valencia A
    Mol Syst Biol; 2007; 3():114. PubMed ID: 17551509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting biodegradation.
    Wackett LP; Ellis LB
    Environ Microbiol; 1999 Apr; 1(2):119-24. PubMed ID: 11207727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Mobile genetic elements for microbial degradation of environmental pollutants].
    Tsuda M; Sota M
    Tanpakushitsu Kakusan Koso; 2005 Oct; 50(12):1527-34. PubMed ID: 16218452
    [No Abstract]   [Full Text] [Related]  

  • 28. Screening of persistent organic pollutants by QSPR classification models: a comparative study.
    Papa E; Gramatica P
    J Mol Graph Model; 2008 Aug; 27(1):59-65. PubMed ID: 18387326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial communities in oil-contaminated seawater.
    Harayama S; Kasai Y; Hara A
    Curr Opin Biotechnol; 2004 Jun; 15(3):205-14. PubMed ID: 15193328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of microbial communities in activated sludge: potential implications for assessing the biodegradability of chemicals.
    Forney LJ; Liu WT; Guckert JB; Kumagai Y; Namkung E; Nishihara T; Larson RJ
    Ecotoxicol Environ Saf; 2001 May; 49(1):40-53. PubMed ID: 11386714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradability assessment of several priority hazardous substances: choice, application and relevance regarding toxicity and bacterial activity.
    Lapertot ME; Pulgarin C
    Chemosphere; 2006 Oct; 65(4):682-90. PubMed ID: 16566958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of chemical metabolism for fate and hazard assessment. II CATALOGIC simulation of abiotic and microbial degradation.
    Dimitrov S; Pavlov T; Dimitrova N; Georgieva D; Nedelcheva D; Kesova A; Vasilev R; Mekenyan O
    SAR QSAR Environ Res; 2011 Oct; 22(7-8):719-55. PubMed ID: 21999837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic changes in microbial community structure and function in phenol-degrading microcosms inoculated with cells from a contaminated aquifer.
    Elliott DR; Scholes JD; Thornton SF; Rizoulis A; Banwart SA; Rolfe SA
    FEMS Microbiol Ecol; 2010 Feb; 71(2):247-59. PubMed ID: 19930459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High Throughput Biodegradation-Screening Test To Prioritize and Evaluate Chemical Biodegradability.
    Martin TJ; Goodhead AK; Acharya K; Head IM; Snape JR; Davenport RJ
    Environ Sci Technol; 2017 Jun; 51(12):7236-7244. PubMed ID: 28485927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. External validation of structure-biodegradation relationship (SBR) models for predicting the biodegradability of xenobiotics.
    Devillers J; Pandard P; Richard B
    SAR QSAR Environ Res; 2013; 24(12):979-93. PubMed ID: 24313438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative structure-activity relationship study on the biodegradation of acid dyestuffs.
    Li Y; Xi DL
    J Environ Sci (China); 2007; 19(7):800-4. PubMed ID: 17966866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative structure-based modeling applied to characterization and prediction of chemical toxicity.
    Benigni R; Richard AM
    Methods; 1998 Mar; 14(3):264-76. PubMed ID: 9571083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental estrogenic effects of alkylphenol ethoxylates.
    Nimrod AC; Benson WH
    Crit Rev Toxicol; 1996 May; 26(3):335-64. PubMed ID: 8726166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aerobic biodegradation of a nonylphenol polyethoxylate and toxicity of the biodegradation metabolites.
    Jurado E; Fernández-Serrano M; Núñez-Olea J; Lechuga M
    Bull Environ Contam Toxicol; 2009 Sep; 83(3):307-12. PubMed ID: 19343265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling photosynthetically oxygenated biodegradation processes using artificial neural networks.
    Arranz A; Bordel S; Villaverde S; Zamarreño JM; Guieysse B; Muñoz R
    J Hazard Mater; 2008 Jun; 155(1-2):51-7. PubMed ID: 18164545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.