BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 8640604)

  • 1. Production of beta-glucosidase and diauxic usage of sugar mixtures by Candida molischiana.
    Freer SN; Skory CD
    Can J Microbiol; 1996 May; 42(5):431-6. PubMed ID: 8640604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection and study of a Candida molischiana mutant derepressed for beta-glucosidase production.
    Janbon G; Arnaud A; Galzy P
    FEMS Microbiol Lett; 1994 May; 118(3):207-11. PubMed ID: 8020743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic characterization of a beta-glucosidase from a yeast, Candida wickerhamii.
    Freer SN
    J Biol Chem; 1993 May; 268(13):9337-42. PubMed ID: 8486628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Bioethanol Production by
    Zheng J; Negi A; Khomlaem C; Kim BS
    J Microbiol Biotechnol; 2019 Jun; 29(6):905-912. PubMed ID: 31154746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of glucose and cellobiose by Candida wickerhamii and Clavispora lusitaniae.
    Freer SN; Greene RV
    J Biol Chem; 1990 Aug; 265(22):12864-8. PubMed ID: 2115884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of beta-glucosidase in Bacteroides ruminicola by a different mechanism: growth rate-dependent derepression.
    Strobel HJ; Russell JB
    Appl Environ Microbiol; 1987 Oct; 53(10):2505-10. PubMed ID: 3122655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of an intracellular beta-glucosidase purified from the cellobiose-fermenting yeast Candida wickerhamii.
    Skory CD; Freer SN; Bothast RJ
    Appl Microbiol Biotechnol; 1996 Nov; 46(4):353-9. PubMed ID: 8987723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata.
    Saha BC; Bothast RJ
    Appl Environ Microbiol; 1996 Sep; 62(9):3165-70. PubMed ID: 8795205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential incubation of Candida shehatae and ethanol-tolerant yeast cells for efficient ethanol production from a mixture of glucose, xylose and cellobiose.
    Guan D; Li Y; Shiroma R; Ike M; Tokuyasu K
    Bioresour Technol; 2013 Mar; 132():419-22. PubMed ID: 23280092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of beta-1, 4-Glucosidase Expression by Candida wickerhamii.
    Freer SN; Detroy RW
    Appl Environ Microbiol; 1985 Jul; 50(1):152-9. PubMed ID: 16346833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2.
    Saitoh S; Hasunuma T; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae.
    Li S; Du J; Sun J; Galazka JM; Glass NL; Cate JH; Yang X; Zhao H
    Mol Biosyst; 2010 Nov; 6(11):2129-32. PubMed ID: 20871937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentation and aerobic metabolism of cellodextrins by yeasts.
    Freer SN
    Appl Environ Microbiol; 1991 Mar; 57(3):655-9. PubMed ID: 2039228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood.
    Barrilli ÉT; Tadioto V; Milani LM; Deoti JR; Fogolari O; Müller C; Barros KO; Rosa CA; Dos Santos AA; Stambuk BU; Treichel H; Alves SL
    Arch Microbiol; 2020 Sep; 202(7):1729-1739. PubMed ID: 32328754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shared control of maltose and trehalose utilization in Candida utilis.
    Rolim MF; de Araujo PS; Panek AD; Paschoalin VM; Silva JT
    Braz J Med Biol Res; 2003 Jul; 36(7):829-37. PubMed ID: 12845368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient simultaneous saccharification and fermentation of agricultural residues by Saccharomyces cerevisiae and Candida shehatae. The D-xylose fermenting yeast.
    Palnitkar SS; Lachke AH
    Appl Biochem Biotechnol; 1990 Nov; 26(2):151-8. PubMed ID: 2091527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of cellobiose fermentations to ethanol by yeasts.
    Freer SN; Detroy RW
    Biotechnol Bioeng; 1983 Feb; 25(2):541-57. PubMed ID: 18548669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis regulation of the beta-glucosidase produced by a yeast strain transformed by genetic engineering.
    Leclerc M; Chemardin P; Arnaud A; Ratomahenina R; Galzy P; Gerbaud C; Raynal A
    Arch Microbiol; 1986 Nov; 146(2):115-7. PubMed ID: 3099720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of the extracellular beta-glucosidase produced by Candida wickerhamii.
    Freer SN
    Arch Biochem Biophys; 1985 Dec; 243(2):515-22. PubMed ID: 3936420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulase and beta-glucosidase production by a basidiomycete species.
    Shewale JG; Sadana JC
    Can J Microbiol; 1978 Oct; 24(10):1204-16. PubMed ID: 31975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.