These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 8640606)
1. The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis. Milcamps A; Van Dommelen A; Stigter J; Vanderleyden J; de Bruijn FJ Can J Microbiol; 1996 May; 42(5):467-78. PubMed ID: 8640606 [TBL] [Abstract][Full Text] [Related]
2. The ntrB and ntrC genes are involved in the regulation of poly-3-hydroxybutyrate biosynthesis by ammonia in Azospirillum brasilense Sp7. Sun J; Peng X; Van Impe J; Vanderleyden J Appl Environ Microbiol; 2000 Jan; 66(1):113-7. PubMed ID: 10618211 [TBL] [Abstract][Full Text] [Related]
3. Azorhizobium caulinodans nitrogen fixation (nif/fix) gene regulation: mutagenesis of the nifA -24/-12 promoter element, characterization of a ntrA(rpoN) gene, and derivation of a model. Stigter J; Schneider M; de Bruijn FJ Mol Plant Microbe Interact; 1993; 6(2):238-52. PubMed ID: 8471796 [TBL] [Abstract][Full Text] [Related]
4. Repressor mutant forms of the Azospirillum brasilense NtrC protein. Huergo LF; Assumpção MC; Souza EM; Steffens MB; Yates MG; Chubatsu LS; Pedrosa FO Appl Environ Microbiol; 2004 Oct; 70(10):6320-3. PubMed ID: 15466584 [TBL] [Abstract][Full Text] [Related]
5. The ntrBC genes of Azospirillum brasilense are part of a nifR3-like-ntrB-ntrC operon and are negatively regulated. Machado HB; Yates MG; Funayama S; Rigo LU; Steffens MB; Souza EM; Pedrosa FO Can J Microbiol; 1995 Aug; 41(8):674-84. PubMed ID: 7553451 [TBL] [Abstract][Full Text] [Related]
6. Identification of a nifW-like gene in Azospirillum brasilense. Milcamps A; Keyers V; Vanderleyden J Biochim Biophys Acta; 1993 May; 1173(2):237-8. PubMed ID: 8504172 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of the two-component NtrY/NtrX regulatory system in Azospirillum brasilense. Ishida ML; Assumpção MC; Machado HB; Benelli EM; Souza EM; Pedrosa FO Braz J Med Biol Res; 2002 Jun; 35(6):651-61. PubMed ID: 12045829 [TBL] [Abstract][Full Text] [Related]
8. Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma 54 gene (rpoN). Kullik I; Fritsche S; Knobel H; Sanjuan J; Hennecke H; Fischer HM J Bacteriol; 1991 Feb; 173(3):1125-38. PubMed ID: 1991712 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the ntrBC genes of Azospirillum brasilense Sp7: their involvement in the regulation of nitrogenase synthesis and activity. Liang YY; Arsène F; Elmerich C Mol Gen Genet; 1993 Aug; 240(2):188-96. PubMed ID: 8355653 [TBL] [Abstract][Full Text] [Related]
10. Identification of a nifA-like regulatory gene of Azospirillum brasilense Sp7 expressed under conditions of nitrogen fixation and in the presence of air and ammonia. Liang YY; Kaminski PA; Elmerich C Mol Microbiol; 1991 Nov; 5(11):2735-44. PubMed ID: 1779763 [TBL] [Abstract][Full Text] [Related]
11. An extra-cytoplasmic function sigma factor and anti-sigma factor control carotenoid biosynthesis in Azospirillum brasilense. Thirunavukkarasu N; Mishra MN; Spaepen S; Vanderleyden J; Gross CA; Tripathi AK Microbiology (Reading); 2008 Jul; 154(Pt 7):2096-2105. PubMed ID: 18599837 [TBL] [Abstract][Full Text] [Related]
12. Structural homologues P(II) and P(Z) of Azospirillum brasilense provide intracellular signalling for selective regulation of various nitrogen-dependent functions. de Zamaroczy M Mol Microbiol; 1998 Jul; 29(2):449-63. PubMed ID: 9720864 [TBL] [Abstract][Full Text] [Related]
13. Isolation of a glutamate synthase (GOGAT)-negative, pleiotropically N utilization-defective mutant of Azospirillum brasilense: cloning and partial characterization of GOGAT structural gene. Mandal AK; Ghosh S J Bacteriol; 1993 Dec; 175(24):8024-9. PubMed ID: 7902833 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the rpoN locus in the plant pathogenic bacterium, Pseudomonas syringae pv. glycinea. Alarcón-Chaidez FJ; Bender CL DNA Seq; 2001 Jul; 12(1):77-84. PubMed ID: 11697147 [TBL] [Abstract][Full Text] [Related]
15. Nucleotide sequence of the rpoN gene and characterization of two downstream open reading frames in Pseudomonas aeruginosa. Jin S; Ishimoto K; Lory S J Bacteriol; 1994 Mar; 176(5):1316-22. PubMed ID: 8113171 [TBL] [Abstract][Full Text] [Related]
16. Regulation of a Glycerol-Induced Quinoprotein Alcohol Dehydrogenase by σ Singh VS; Dubey AP; Gupta A; Singh S; Singh BN; Tripathi AK J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28439037 [No Abstract] [Full Text] [Related]
17. Cloning and characterisation of the Azospirillum brasilense glnD gene and analysis of a glnD mutant. Van Dommelen A; Keijers V; Somers E; Vanderleyden J Mol Genet Genomics; 2002 Jan; 266(5):813-20. PubMed ID: 11810255 [TBL] [Abstract][Full Text] [Related]
18. A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat. Katupitiya S; Millet J; Vesk M; Viccars L; Zeman A; Lidong Z; Elmerich C; Kennedy IR Appl Environ Microbiol; 1995 May; 61(5):1987-95. PubMed ID: 7646034 [TBL] [Abstract][Full Text] [Related]
19. Functional organization of the glnB-glnA cluster of Azospirillum brasilense. de Zamaroczy M; Paquelin A; Elmerich C J Bacteriol; 1993 May; 175(9):2507-15. PubMed ID: 8097514 [TBL] [Abstract][Full Text] [Related]
20. Structure and expression of the alternative sigma factor, RpoN, in Rhodobacter capsulatus; physiological relevance of an autoactivated nifU2-rpoN superoperon. Cullen PJ; Foster-Hartnett D; Gabbert KK; Kranz RG Mol Microbiol; 1994 Jan; 11(1):51-65. PubMed ID: 8145646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]