BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 8640939)

  • 1. p-Quinone methides are the major decomposition products of catechol estrogen o-quinones.
    Bolton JL; Shen L
    Carcinogenesis; 1996 May; 17(5):925-9. PubMed ID: 8640939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes.
    Iverson SL; Shen L; Anlar N; Bolton JL
    Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA.
    Zhang Y; Gaikwad NW; Olson K; Zahid M; Cavalieri EL; Rogan EG
    Metabolism; 2007 Jul; 56(7):887-94. PubMed ID: 17570247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of the p-alkyl substituent on the isomerization of o-quinones to p-quinone methides: potential bioactivation mechanism for catechols.
    Iverson SL; Hu LQ; Vukomanovic V; Bolton JL
    Chem Res Toxicol; 1995 Jun; 8(4):537-44. PubMed ID: 7548733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The major metabolite of equilin, 4-hydroxyequilin, autoxidizes to an o-quinone which isomerizes to the potent cytotoxin 4-hydroxyequilenin-o-quinone.
    Zhang F; Chen Y; Pisha E; Shen L; Xiong Y; van Breemen RB; Bolton JL
    Chem Res Toxicol; 1999 Feb; 12(2):204-13. PubMed ID: 10027800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended pi-conjugation dramatically stabilizes the quinone methide formed from eugenol.
    Bolton JL; Comeau E; Vukomanovic V
    Chem Biol Interact; 1995 Apr; 95(3):279-90. PubMed ID: 7728898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioreductive activation of catechol estrogen-ortho-quinones: aromatization of the B ring in 4-hydroxyequilenin markedly alters quinoid formation and reactivity.
    Shen L; Pisha E; Huang Z; Pezzuto JM; Krol E; Alam Z; van Breemen RB; Bolton JL
    Carcinogenesis; 1997 May; 18(5):1093-101. PubMed ID: 9163701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of glutathione S-transferase activity by the quinoid metabolites of equine estrogens.
    Chang M; Zhang F; Shen L; Pauss N; Alam I; van Breemen RB; Blond SY; Bolton JL
    Chem Res Toxicol; 1998 Jul; 11(7):758-65. PubMed ID: 9671538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic characterization of the 4-hydroxy catechol estrogen quinones-derived GSH and N-acetylated Cys conjugates.
    Jankowiak R; Markushin Y; Cavalieri EL; Small GJ
    Chem Res Toxicol; 2003 Mar; 16(3):304-11. PubMed ID: 12641430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells.
    Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM
    Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential action of phase I and II enzymes cytochrome p450 1B1 and glutathione S-transferase P1 in mammary estrogen metabolism.
    Hachey DL; Dawling S; Roodi N; Parl FF
    Cancer Res; 2003 Dec; 63(23):8492-9. PubMed ID: 14679015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro model of mammary estrogen metabolism: structural and kinetic differences between catechol estrogens 2- and 4-hydroxyestradiol.
    Dawling S; Hachey DL; Roodi N; Parl FF
    Chem Res Toxicol; 2004 Sep; 17(9):1258-64. PubMed ID: 15377160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that 4-allyl-o-quinones spontaneously rearrange to their more electrophilic quinone methides: potential bioactivation mechanism for the hepatocarcinogen safrole.
    Bolton JL; Acay NM; Vukomanovic V
    Chem Res Toxicol; 1994; 7(3):443-50. PubMed ID: 8075378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and reactivity of potential toxic metabolites of tamoxifen analogues: droloxifene and toremifene o-quinones.
    Yao D; Zhang F; Yu L; Yang Y; van Breemen RB; Bolton JL
    Chem Res Toxicol; 2001 Dec; 14(12):1643-53. PubMed ID: 11743747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential mechanisms of estrogen quinone carcinogenesis.
    Bolton JL; Thatcher GR
    Chem Res Toxicol; 2008 Jan; 21(1):93-101. PubMed ID: 18052105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catechol quinones of estrogens in the initiation of breast, prostate, and other human cancers: keynote lecture.
    Cavalieri E; Rogan E
    Ann N Y Acad Sci; 2006 Nov; 1089():286-301. PubMed ID: 17261777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of isomerization of 4-propyl-o-quinone to its tautomeric p-quinone methide.
    Bolton JL; Wu HM; Hu LQ
    Chem Res Toxicol; 1996; 9(1):109-113. PubMed ID: 8924578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 17 beta-estradiol metabolism by hamster hepatic microsomes: comparison of catechol estrogen O-methylation with catechol estrogen oxidation and glutathione conjugation.
    Butterworth M; Lau SS; Monks TJ
    Chem Res Toxicol; 1996 Jun; 9(4):793-9. PubMed ID: 8831825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is bisphenol A a weak carcinogen like the natural estrogens and diethylstilbestrol?
    Cavalieri EL; Rogan EG
    IUBMB Life; 2010 Oct; 62(10):746-51. PubMed ID: 20945454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides.
    Fan PW; Zhang F; Bolton JL
    Chem Res Toxicol; 2000 Jan; 13(1):45-52. PubMed ID: 10649966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.