These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 864117)

  • 1. Proton magnetic resonance studies of specific association of nucleic acid constitutent bases in a nonaqueous solvent. Utility of DTBN radical to probe the affinity of hydrogen bonding involved in complementary base pairs1.
    Morishima I; Inubushi T; Yonezawa T; Kyogoku Y
    J Am Chem Soc; 1977 Jun; 99(13):4299-4305. PubMed ID: 864117
    [No Abstract]   [Full Text] [Related]  

  • 2. Direct proton exchange between complementary nucleic acid bases.
    Iwahashi H; Kyogoku Y
    Nature; 1978 Jan; 271(5642):277-8. PubMed ID: 622169
    [No Abstract]   [Full Text] [Related]  

  • 3. Hydrogen bonding between nucleic acid bases and carboxylic acids.
    Lancelot G
    J Am Chem Soc; 1977 Oct; 99(21):7037-42. PubMed ID: 903534
    [No Abstract]   [Full Text] [Related]  

  • 4. Interactions of nucleic-acid base-pairs with acidic side chains of protein. Crystal structures of adenine: 1-(2-carboxyethyl)uracil (1:1) complex and 1-methylcytosine: 9-(2-carboxyethyl)guanine (1:1) complex.
    Takenaka A; Fujita S; Sasada Y
    Nucleic Acids Symp Ser; 1982; (11):281-4. PubMed ID: 7183967
    [No Abstract]   [Full Text] [Related]  

  • 5. Dynamic properties of interaction between nucleic acid bases and models of amino acids.
    Yu BS; Sohn DH; Goo G
    Biochem Int; 1989 Jan; 18(1):189-95. PubMed ID: 2719711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of alkylated guanines, adenines, uracils and cytosines by thin-layer chromatography.
    Issaq HJ; Barr EW; Zielinski WL
    J Chromatogr; 1977 Jan; 131():265-73. PubMed ID: 853099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of interaction between nucleic acids and proteins. Hydrogen bonding of arginine with nucleic acid bases, phosphate groups and carboxylic acids.
    Lancelot G; Mayer R; Hélène C
    Biochim Biophys Acta; 1979 Sep; 564(2):181-90. PubMed ID: 486477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protonated base pairs explain the ambiguous pairing properties of O6-methylguanine.
    Williams LD; Shaw BR
    Proc Natl Acad Sci U S A; 1987 Apr; 84(7):1779-83. PubMed ID: 3470757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases.
    McGhee JD; von Hippel PH
    Biochemistry; 1975 Mar; 14(6):1281-96. PubMed ID: 235285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Ionization potentials of nucleic acid nitrogenous bases].
    Verkin BI; Sukhodub LF; Ianson IK
    Dokl Akad Nauk SSSR; 1976; 228(6):1452-5. PubMed ID: 949936
    [No Abstract]   [Full Text] [Related]  

  • 11. Photochemistry of nucleic acid bases and their thio- and aza-analogues in solution.
    Pollum M; Martínez-Fernández L; Crespo-Hernández CE
    Top Curr Chem; 2015; 355():245-327. PubMed ID: 25238718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoionization spectroscopy of nucleobases and analogues in the gas phase using synchrotron radiation as excitation light source.
    Schwell M; Hochlaf M
    Top Curr Chem; 2015; 355():155-208. PubMed ID: 25238717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An 15N NMR study of adenine-uracil base pair in a non-aqueous solvent.
    Watanabe M; Iwahashi H; Sugeta H; Kyogoku Y; Kainosho M
    Nucleic Acids Symp Ser; 1979; (6):s79-82. PubMed ID: 547245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of intermolecular interactions of nucleic acid bases in aqueous solutions by the proton magnetic resonance method. Self-association of 6,9-dimethyladenine and its pyrazole analogue and their association with methyl-substituted cytosine and uracil.
    Antonovsky VL; Gukovskaja AS; Nekrasova GV; Sukhorukov BI; Tchervin II
    Biochim Biophys Acta; 1973 Nov; 331(1):9-20. PubMed ID: 4761105
    [No Abstract]   [Full Text] [Related]  

  • 15. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid, quantitative separation by high-performance liquid chromatography of methylated bases in transfer RNA.
    Salas CE; Sellinger OZ
    J Chromatogr; 1977 Mar; 133(1):231-6. PubMed ID: 838804
    [No Abstract]   [Full Text] [Related]  

  • 17. Model studies of interactions between nucleic acids and proteins: hydrogen bonding of amides with nucleic acid bases.
    Lancelot G; Hélène C
    Nucleic Acids Res; 1979 Mar; 6(3):1063-71. PubMed ID: 440968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective recognition of nucleic acids by proteins: the specificity of guanine interaction with carboxylate ions.
    Lancelot G; Hélène C
    Proc Natl Acad Sci U S A; 1977 Nov; 74(11):4872-5. PubMed ID: 270720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of oxidized and chlorinated bases in DNA treated with reactive oxygen species: implications for assessment of oxidative damage in vivo.
    Whiteman M; Hong HS; Jenner A; Halliwell B
    Biochem Biophys Res Commun; 2002 Aug; 296(4):883-9. PubMed ID: 12200130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methoxyamine-induced mutagenesis of nucleic acids. A proton NMR study of oligonucleotides containing N4-methoxycytosine paired with adenine or guanine.
    Gdaniec Z; Ban B; Sowers LC; Fazakerley GV
    Eur J Biochem; 1996 Dec; 242(2):271-9. PubMed ID: 8973643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.